用户-项目二部网络的潜在兴趣和主题挖掘

Jinliang Xu, Shangguang Wang, Sen Su, S. Kumar, Chou Wu
{"title":"用户-项目二部网络的潜在兴趣和主题挖掘","authors":"Jinliang Xu, Shangguang Wang, Sen Su, S. Kumar, Chou Wu","doi":"10.1109/SCC.2016.105","DOIUrl":null,"url":null,"abstract":"Latent Factor Model (LFM) is extensively used in dealing with user-item bipartite networks in service recommendation systems. To alleviate the limitations of LFM, this papers presents a novel unsupervised learning model, Latent Interest and Topic Mining model (LITM), to automatically mine the latent user interests and item topics from user-item bipartite networks. In particular, we introduce the motivation and objectives of this bipartite network based approach, and detail the model development and optimization process of the proposed LITM. This work not only provides an efficient method for latent user interest and item topic mining, but also highlights a new way to improve the accuracy of service recommendation. Experimental studies are performed and the results validate the LITM's efficiency in model training, and its ability to provide better service recommendation performance based on user-item bipartite networks are demonstrated.","PeriodicalId":115693,"journal":{"name":"2016 IEEE International Conference on Services Computing (SCC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Latent Interest and Topic Mining on User-Item Bipartite Networks\",\"authors\":\"Jinliang Xu, Shangguang Wang, Sen Su, S. Kumar, Chou Wu\",\"doi\":\"10.1109/SCC.2016.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Latent Factor Model (LFM) is extensively used in dealing with user-item bipartite networks in service recommendation systems. To alleviate the limitations of LFM, this papers presents a novel unsupervised learning model, Latent Interest and Topic Mining model (LITM), to automatically mine the latent user interests and item topics from user-item bipartite networks. In particular, we introduce the motivation and objectives of this bipartite network based approach, and detail the model development and optimization process of the proposed LITM. This work not only provides an efficient method for latent user interest and item topic mining, but also highlights a new way to improve the accuracy of service recommendation. Experimental studies are performed and the results validate the LITM's efficiency in model training, and its ability to provide better service recommendation performance based on user-item bipartite networks are demonstrated.\",\"PeriodicalId\":115693,\"journal\":{\"name\":\"2016 IEEE International Conference on Services Computing (SCC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Services Computing (SCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCC.2016.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Services Computing (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC.2016.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

潜在因素模型(Latent Factor Model, LFM)广泛应用于服务推荐系统中用户-物品二部网络的处理。为了缓解LFM的局限性,本文提出了一种新的无监督学习模型——潜在兴趣和主题挖掘模型(LITM),用于从用户-项目二部网络中自动挖掘潜在用户兴趣和项目主题。特别地,我们介绍了这种基于二部网络的方法的动机和目标,并详细介绍了所提出的LITM的模型开发和优化过程。这项工作不仅为潜在用户兴趣和项目主题挖掘提供了一种有效的方法,而且为提高服务推荐的准确性提供了一条新的途径。实验结果验证了LITM在模型训练方面的有效性,并证明了基于用户-物品二部网络的LITM能够提供更好的服务推荐性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Latent Interest and Topic Mining on User-Item Bipartite Networks
Latent Factor Model (LFM) is extensively used in dealing with user-item bipartite networks in service recommendation systems. To alleviate the limitations of LFM, this papers presents a novel unsupervised learning model, Latent Interest and Topic Mining model (LITM), to automatically mine the latent user interests and item topics from user-item bipartite networks. In particular, we introduce the motivation and objectives of this bipartite network based approach, and detail the model development and optimization process of the proposed LITM. This work not only provides an efficient method for latent user interest and item topic mining, but also highlights a new way to improve the accuracy of service recommendation. Experimental studies are performed and the results validate the LITM's efficiency in model training, and its ability to provide better service recommendation performance based on user-item bipartite networks are demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing the Required Degree of Multitenancy Isolation: A Case Study of Cloud-Hosted Bug Tracking System Complexity Reduction: Local Activity Ranking by Resource Entropy for QoS-Aware Cloud Scheduling An Elasticity-Aware Governance Platform for Cloud Service Delivery An Approach for Modeling and Ranking Node-Level Stragglers in Cloud Datacenters Dynamic Selection for Service Composition Based on Temporal and QoS Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1