在线顶点加权二部匹配

Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, Yuhao Zhang
{"title":"在线顶点加权二部匹配","authors":"Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, Yuhao Zhang","doi":"10.1145/3326169","DOIUrl":null,"url":null,"abstract":"We introduce a weighted version of the ranking algorithm by Karp et al. (STOC 1990), and we prove a competitive ratio of 0.6534 for the vertex-weighted online bipartite matching problem when online vertices arrive in random order. Our result shows that random arrivals help beating the 1-1/e barrier even in the vertex-weighted case. We build on the randomized primal-dual framework by Devanur et al. (SODA 2013) and design a two dimensional gain sharing function, which depends not only on the rank of the offline vertex, but also on the arrival time of the online vertex. To our knowledge, this is the first competitive ratio strictly larger than 1-1/e for an online bipartite matching problem achieved under the randomized primal-dual framework. Our algorithm has a natural interpretation that offline vertices offer a larger portion of their weights to the online vertices as time increases, and each online vertex matches the neighbor with the highest offer at its arrival.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Online Vertex-Weighted Bipartite Matching\",\"authors\":\"Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, Yuhao Zhang\",\"doi\":\"10.1145/3326169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a weighted version of the ranking algorithm by Karp et al. (STOC 1990), and we prove a competitive ratio of 0.6534 for the vertex-weighted online bipartite matching problem when online vertices arrive in random order. Our result shows that random arrivals help beating the 1-1/e barrier even in the vertex-weighted case. We build on the randomized primal-dual framework by Devanur et al. (SODA 2013) and design a two dimensional gain sharing function, which depends not only on the rank of the offline vertex, but also on the arrival time of the online vertex. To our knowledge, this is the first competitive ratio strictly larger than 1-1/e for an online bipartite matching problem achieved under the randomized primal-dual framework. Our algorithm has a natural interpretation that offline vertices offer a larger portion of their weights to the online vertices as time increases, and each online vertex matches the neighbor with the highest offer at its arrival.\",\"PeriodicalId\":154047,\"journal\":{\"name\":\"ACM Transactions on Algorithms (TALG)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms (TALG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3326169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3326169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们引入Karp等人(STOC 1990)的加权排序算法,并证明了当在线顶点以随机顺序到达时,顶点加权在线二部匹配问题的竞争比为0.6534。我们的结果表明,即使在顶点加权的情况下,随机到达也有助于突破1-1/e障碍。我们在Devanur等人(SODA 2013)的随机原始-对偶框架的基础上,设计了一个二维增益共享函数,该函数不仅取决于离线顶点的秩,还取决于在线顶点的到达时间。据我们所知,这是在随机原始对偶框架下实现的在线二部匹配问题的竞争比第一次严格大于1-1/e。我们的算法有一个自然的解释,即随着时间的增加,离线顶点向在线顶点提供更大一部分权重,并且每个在线顶点在其到达时匹配具有最高权重的邻居。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online Vertex-Weighted Bipartite Matching
We introduce a weighted version of the ranking algorithm by Karp et al. (STOC 1990), and we prove a competitive ratio of 0.6534 for the vertex-weighted online bipartite matching problem when online vertices arrive in random order. Our result shows that random arrivals help beating the 1-1/e barrier even in the vertex-weighted case. We build on the randomized primal-dual framework by Devanur et al. (SODA 2013) and design a two dimensional gain sharing function, which depends not only on the rank of the offline vertex, but also on the arrival time of the online vertex. To our knowledge, this is the first competitive ratio strictly larger than 1-1/e for an online bipartite matching problem achieved under the randomized primal-dual framework. Our algorithm has a natural interpretation that offline vertices offer a larger portion of their weights to the online vertices as time increases, and each online vertex matches the neighbor with the highest offer at its arrival.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generic Techniques for Building Top-k Structures Deterministic Leader Election in Anonymous Radio Networks A Learned Approach to Design Compressed Rank/Select Data Structures k-apices of Minor-closed Graph Classes. II. Parameterized Algorithms Fully Dynamic (Δ +1)-Coloring in O(1) Update Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1