基于离散小波变换的船用柴油机数据趋势预测

Yifei Pan, Zehui Mao, Quan Xiao, Xiao He, Y. Zhang
{"title":"基于离散小波变换的船用柴油机数据趋势预测","authors":"Yifei Pan, Zehui Mao, Quan Xiao, Xiao He, Y. Zhang","doi":"10.1109/DDCLS.2017.8068173","DOIUrl":null,"url":null,"abstract":"In this paper, a multi-model data trend prediction method is proposed for marine diesel engine to the prognosis of faults. According to the data characteristics, the discrete wavelet transform is used to process the data, which can eliminate the noise of the high-frequency and retain the low-frequency signal. The auto-regression, the gray model, the BP neural network and the radial-based neural network methods are employed to trend prediction and the results are compared. In terms of convergence speed, the autoregressive model has the best performance of the fault prognosis. In terms of fitting error, the neural network model has the best accuracy.","PeriodicalId":419114,"journal":{"name":"2017 6th Data Driven Control and Learning Systems (DDCLS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Discrete wavelet transform based data trend prediction for marine diesel engine\",\"authors\":\"Yifei Pan, Zehui Mao, Quan Xiao, Xiao He, Y. Zhang\",\"doi\":\"10.1109/DDCLS.2017.8068173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a multi-model data trend prediction method is proposed for marine diesel engine to the prognosis of faults. According to the data characteristics, the discrete wavelet transform is used to process the data, which can eliminate the noise of the high-frequency and retain the low-frequency signal. The auto-regression, the gray model, the BP neural network and the radial-based neural network methods are employed to trend prediction and the results are compared. In terms of convergence speed, the autoregressive model has the best performance of the fault prognosis. In terms of fitting error, the neural network model has the best accuracy.\",\"PeriodicalId\":419114,\"journal\":{\"name\":\"2017 6th Data Driven Control and Learning Systems (DDCLS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 6th Data Driven Control and Learning Systems (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2017.8068173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th Data Driven Control and Learning Systems (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2017.8068173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种多模型数据趋势预测方法,用于船用柴油机故障预测。根据数据特点,采用离散小波变换对数据进行处理,既能去除高频噪声,又能保留低频信号。采用自回归、灰色模型、BP神经网络和基于径向的神经网络方法进行趋势预测,并对预测结果进行了比较。从收敛速度来看,自回归模型的故障预测效果最好。在拟合误差方面,神经网络模型具有最佳的拟合精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discrete wavelet transform based data trend prediction for marine diesel engine
In this paper, a multi-model data trend prediction method is proposed for marine diesel engine to the prognosis of faults. According to the data characteristics, the discrete wavelet transform is used to process the data, which can eliminate the noise of the high-frequency and retain the low-frequency signal. The auto-regression, the gray model, the BP neural network and the radial-based neural network methods are employed to trend prediction and the results are compared. In terms of convergence speed, the autoregressive model has the best performance of the fault prognosis. In terms of fitting error, the neural network model has the best accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-free adaptive MIMO control algorithm application in polishing robot Multiple-fault diagnosis of analog circuit with fault tolerance Iterative learning control for switched singular systems Active disturbance rejection generalized predictive control and its application on large time-delay systems Robust ADRC for nonlinear time-varying system with uncertainties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1