Yifei Pan, Zehui Mao, Quan Xiao, Xiao He, Y. Zhang
{"title":"基于离散小波变换的船用柴油机数据趋势预测","authors":"Yifei Pan, Zehui Mao, Quan Xiao, Xiao He, Y. Zhang","doi":"10.1109/DDCLS.2017.8068173","DOIUrl":null,"url":null,"abstract":"In this paper, a multi-model data trend prediction method is proposed for marine diesel engine to the prognosis of faults. According to the data characteristics, the discrete wavelet transform is used to process the data, which can eliminate the noise of the high-frequency and retain the low-frequency signal. The auto-regression, the gray model, the BP neural network and the radial-based neural network methods are employed to trend prediction and the results are compared. In terms of convergence speed, the autoregressive model has the best performance of the fault prognosis. In terms of fitting error, the neural network model has the best accuracy.","PeriodicalId":419114,"journal":{"name":"2017 6th Data Driven Control and Learning Systems (DDCLS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Discrete wavelet transform based data trend prediction for marine diesel engine\",\"authors\":\"Yifei Pan, Zehui Mao, Quan Xiao, Xiao He, Y. Zhang\",\"doi\":\"10.1109/DDCLS.2017.8068173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a multi-model data trend prediction method is proposed for marine diesel engine to the prognosis of faults. According to the data characteristics, the discrete wavelet transform is used to process the data, which can eliminate the noise of the high-frequency and retain the low-frequency signal. The auto-regression, the gray model, the BP neural network and the radial-based neural network methods are employed to trend prediction and the results are compared. In terms of convergence speed, the autoregressive model has the best performance of the fault prognosis. In terms of fitting error, the neural network model has the best accuracy.\",\"PeriodicalId\":419114,\"journal\":{\"name\":\"2017 6th Data Driven Control and Learning Systems (DDCLS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 6th Data Driven Control and Learning Systems (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2017.8068173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th Data Driven Control and Learning Systems (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2017.8068173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discrete wavelet transform based data trend prediction for marine diesel engine
In this paper, a multi-model data trend prediction method is proposed for marine diesel engine to the prognosis of faults. According to the data characteristics, the discrete wavelet transform is used to process the data, which can eliminate the noise of the high-frequency and retain the low-frequency signal. The auto-regression, the gray model, the BP neural network and the radial-based neural network methods are employed to trend prediction and the results are compared. In terms of convergence speed, the autoregressive model has the best performance of the fault prognosis. In terms of fitting error, the neural network model has the best accuracy.