{"title":"BiasP","authors":"H. Kumar, Nikhil Chawla, S. Mukhopadhyay","doi":"10.1145/3370748.3406549","DOIUrl":null,"url":null,"abstract":"Dynamic Voltage and Frequency Scaling (DVFS) plays an integral role in reducing the energy consumption of mobile devices, meeting the targeted performance requirements at the same time. We examine the security obliviousness of CPUFreq, the DVFS framework in Linux-kernel based systems. Since Linux-kernel based operating systems are present in a wide array of applications, the high-level CPUFreq policies are designed to be platform-independent. Using these policies, we present BiasP exploit, which restricts the allocation of CPU resources to a set of targeted applications, thereby degrading their performance. The exploit involves detecting the execution of instructions on the CPU core pertinent to the targeted applications, thereafter using CPUFreq policies to limit the available CPU resources available to those instructions. We demonstrate the practicality of the exploit by operating it on a commercial smartphone, running Android OS based on Linux-kernel. We can successfully degrade the User Interface (UI) performance of the targeted applications by increasing the frame processing time and the number of dropped frames by up to 200% and 947% for the animations belonging to the targeted-applications. We see a reduction of up to 66% in the number of retired instructions of the targeted-applications. Furthermore, we propose a robust detector which is capable of detecting exploits aimed at undermining resource allocation fairness through malicious use of the DVFS framework.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"BiasP\",\"authors\":\"H. Kumar, Nikhil Chawla, S. Mukhopadhyay\",\"doi\":\"10.1145/3370748.3406549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic Voltage and Frequency Scaling (DVFS) plays an integral role in reducing the energy consumption of mobile devices, meeting the targeted performance requirements at the same time. We examine the security obliviousness of CPUFreq, the DVFS framework in Linux-kernel based systems. Since Linux-kernel based operating systems are present in a wide array of applications, the high-level CPUFreq policies are designed to be platform-independent. Using these policies, we present BiasP exploit, which restricts the allocation of CPU resources to a set of targeted applications, thereby degrading their performance. The exploit involves detecting the execution of instructions on the CPU core pertinent to the targeted applications, thereafter using CPUFreq policies to limit the available CPU resources available to those instructions. We demonstrate the practicality of the exploit by operating it on a commercial smartphone, running Android OS based on Linux-kernel. We can successfully degrade the User Interface (UI) performance of the targeted applications by increasing the frame processing time and the number of dropped frames by up to 200% and 947% for the animations belonging to the targeted-applications. We see a reduction of up to 66% in the number of retired instructions of the targeted-applications. Furthermore, we propose a robust detector which is capable of detecting exploits aimed at undermining resource allocation fairness through malicious use of the DVFS framework.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3370748.3406549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3406549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BiasP
Dynamic Voltage and Frequency Scaling (DVFS) plays an integral role in reducing the energy consumption of mobile devices, meeting the targeted performance requirements at the same time. We examine the security obliviousness of CPUFreq, the DVFS framework in Linux-kernel based systems. Since Linux-kernel based operating systems are present in a wide array of applications, the high-level CPUFreq policies are designed to be platform-independent. Using these policies, we present BiasP exploit, which restricts the allocation of CPU resources to a set of targeted applications, thereby degrading their performance. The exploit involves detecting the execution of instructions on the CPU core pertinent to the targeted applications, thereafter using CPUFreq policies to limit the available CPU resources available to those instructions. We demonstrate the practicality of the exploit by operating it on a commercial smartphone, running Android OS based on Linux-kernel. We can successfully degrade the User Interface (UI) performance of the targeted applications by increasing the frame processing time and the number of dropped frames by up to 200% and 947% for the animations belonging to the targeted-applications. We see a reduction of up to 66% in the number of retired instructions of the targeted-applications. Furthermore, we propose a robust detector which is capable of detecting exploits aimed at undermining resource allocation fairness through malicious use of the DVFS framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge AI Applications HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors Improving Performance and Power by Co-Optimizing Middle-of-Line Routing, Pin Pattern Generation, and Contact over Active Gates in Standard Cell Layout Synthesis Exploiting successive identical words and differences with dynamic bases for effective compression in Non-Volatile Memories Canopy: A CNFET-based Process Variation Aware Systolic DNN Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1