{"title":"一种基于脑电的非线性惩罚驱动自适应阈值检测算法","authors":"Sagila K. Gangadharan, A. Vinod","doi":"10.1109/BioSMART54244.2021.9677686","DOIUrl":null,"url":null,"abstract":"Drowsiness, leading to traffic and workplace accidents has been a persistent safety concern over years. Most of the electroencephalogram (EEG)-based drowsiness detection methods in literature use pre-trained classifier models. However, due to the non-stationarity of EEG signals, the patterns associated with drowsiness vary from subject to subject (inter-subject variability) and from session to session for each individual subject (intra-subject variability), necessitating an adaptive drowsiness detection algorithm. In this paper, an electroencephalogram (EEG) based drowsiness detection algorithm, that can adapt to the inter-subject and intra-subject variabilities is proposed. Drowsiness detection is performed based on a simple thresholding algorithm in which, session dependent thresholds are predicted adaptively using a regression model. The proposed drowsiness detection is done using a consumer grade wearable headband ensuring user comfort and the algorithm yields a better detection accuracy of 85.01 % compared to conventional classifier-based approach (83.15%). The proposed adaptive thresholding algorithm can effectively be used for drowsiness detection and is suitable for real time drowsiness detection since the thresholds are determined adaptively.","PeriodicalId":286026,"journal":{"name":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nonlinear Penalty Driven Adaptive Thresholding Algorithm for Drowsiness Detection using EEG\",\"authors\":\"Sagila K. Gangadharan, A. Vinod\",\"doi\":\"10.1109/BioSMART54244.2021.9677686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drowsiness, leading to traffic and workplace accidents has been a persistent safety concern over years. Most of the electroencephalogram (EEG)-based drowsiness detection methods in literature use pre-trained classifier models. However, due to the non-stationarity of EEG signals, the patterns associated with drowsiness vary from subject to subject (inter-subject variability) and from session to session for each individual subject (intra-subject variability), necessitating an adaptive drowsiness detection algorithm. In this paper, an electroencephalogram (EEG) based drowsiness detection algorithm, that can adapt to the inter-subject and intra-subject variabilities is proposed. Drowsiness detection is performed based on a simple thresholding algorithm in which, session dependent thresholds are predicted adaptively using a regression model. The proposed drowsiness detection is done using a consumer grade wearable headband ensuring user comfort and the algorithm yields a better detection accuracy of 85.01 % compared to conventional classifier-based approach (83.15%). The proposed adaptive thresholding algorithm can effectively be used for drowsiness detection and is suitable for real time drowsiness detection since the thresholds are determined adaptively.\",\"PeriodicalId\":286026,\"journal\":{\"name\":\"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioSMART54244.2021.9677686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioSMART54244.2021.9677686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Nonlinear Penalty Driven Adaptive Thresholding Algorithm for Drowsiness Detection using EEG
Drowsiness, leading to traffic and workplace accidents has been a persistent safety concern over years. Most of the electroencephalogram (EEG)-based drowsiness detection methods in literature use pre-trained classifier models. However, due to the non-stationarity of EEG signals, the patterns associated with drowsiness vary from subject to subject (inter-subject variability) and from session to session for each individual subject (intra-subject variability), necessitating an adaptive drowsiness detection algorithm. In this paper, an electroencephalogram (EEG) based drowsiness detection algorithm, that can adapt to the inter-subject and intra-subject variabilities is proposed. Drowsiness detection is performed based on a simple thresholding algorithm in which, session dependent thresholds are predicted adaptively using a regression model. The proposed drowsiness detection is done using a consumer grade wearable headband ensuring user comfort and the algorithm yields a better detection accuracy of 85.01 % compared to conventional classifier-based approach (83.15%). The proposed adaptive thresholding algorithm can effectively be used for drowsiness detection and is suitable for real time drowsiness detection since the thresholds are determined adaptively.