一种基于脑电的非线性惩罚驱动自适应阈值检测算法

Sagila K. Gangadharan, A. Vinod
{"title":"一种基于脑电的非线性惩罚驱动自适应阈值检测算法","authors":"Sagila K. Gangadharan, A. Vinod","doi":"10.1109/BioSMART54244.2021.9677686","DOIUrl":null,"url":null,"abstract":"Drowsiness, leading to traffic and workplace accidents has been a persistent safety concern over years. Most of the electroencephalogram (EEG)-based drowsiness detection methods in literature use pre-trained classifier models. However, due to the non-stationarity of EEG signals, the patterns associated with drowsiness vary from subject to subject (inter-subject variability) and from session to session for each individual subject (intra-subject variability), necessitating an adaptive drowsiness detection algorithm. In this paper, an electroencephalogram (EEG) based drowsiness detection algorithm, that can adapt to the inter-subject and intra-subject variabilities is proposed. Drowsiness detection is performed based on a simple thresholding algorithm in which, session dependent thresholds are predicted adaptively using a regression model. The proposed drowsiness detection is done using a consumer grade wearable headband ensuring user comfort and the algorithm yields a better detection accuracy of 85.01 % compared to conventional classifier-based approach (83.15%). The proposed adaptive thresholding algorithm can effectively be used for drowsiness detection and is suitable for real time drowsiness detection since the thresholds are determined adaptively.","PeriodicalId":286026,"journal":{"name":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nonlinear Penalty Driven Adaptive Thresholding Algorithm for Drowsiness Detection using EEG\",\"authors\":\"Sagila K. Gangadharan, A. Vinod\",\"doi\":\"10.1109/BioSMART54244.2021.9677686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drowsiness, leading to traffic and workplace accidents has been a persistent safety concern over years. Most of the electroencephalogram (EEG)-based drowsiness detection methods in literature use pre-trained classifier models. However, due to the non-stationarity of EEG signals, the patterns associated with drowsiness vary from subject to subject (inter-subject variability) and from session to session for each individual subject (intra-subject variability), necessitating an adaptive drowsiness detection algorithm. In this paper, an electroencephalogram (EEG) based drowsiness detection algorithm, that can adapt to the inter-subject and intra-subject variabilities is proposed. Drowsiness detection is performed based on a simple thresholding algorithm in which, session dependent thresholds are predicted adaptively using a regression model. The proposed drowsiness detection is done using a consumer grade wearable headband ensuring user comfort and the algorithm yields a better detection accuracy of 85.01 % compared to conventional classifier-based approach (83.15%). The proposed adaptive thresholding algorithm can effectively be used for drowsiness detection and is suitable for real time drowsiness detection since the thresholds are determined adaptively.\",\"PeriodicalId\":286026,\"journal\":{\"name\":\"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioSMART54244.2021.9677686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioSMART54244.2021.9677686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多年来,导致交通和工作场所事故的嗜睡一直是一个持续存在的安全问题。文献中大多数基于脑电图(EEG)的睡意检测方法使用预训练的分类器模型。然而,由于脑电图信号的非平稳性,与困倦相关的模式因受试者而异(受试者间可变性),每个受试者的不同会话(受试者内可变性)也不同,因此需要自适应困倦检测算法。本文提出了一种基于脑电图的睡意检测算法,该算法能够适应主体间和主体内的变化。困倦检测基于简单的阈值算法,其中会话相关阈值使用回归模型自适应预测。所提出的困倦检测使用消费级可穿戴头带完成,确保用户舒适,与传统的基于分类器的方法(83.15%)相比,该算法的检测准确率为85.01%。所提出的自适应阈值算法可以有效地用于困倦检测,并且由于阈值是自适应确定的,适合于实时的困倦检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Nonlinear Penalty Driven Adaptive Thresholding Algorithm for Drowsiness Detection using EEG
Drowsiness, leading to traffic and workplace accidents has been a persistent safety concern over years. Most of the electroencephalogram (EEG)-based drowsiness detection methods in literature use pre-trained classifier models. However, due to the non-stationarity of EEG signals, the patterns associated with drowsiness vary from subject to subject (inter-subject variability) and from session to session for each individual subject (intra-subject variability), necessitating an adaptive drowsiness detection algorithm. In this paper, an electroencephalogram (EEG) based drowsiness detection algorithm, that can adapt to the inter-subject and intra-subject variabilities is proposed. Drowsiness detection is performed based on a simple thresholding algorithm in which, session dependent thresholds are predicted adaptively using a regression model. The proposed drowsiness detection is done using a consumer grade wearable headband ensuring user comfort and the algorithm yields a better detection accuracy of 85.01 % compared to conventional classifier-based approach (83.15%). The proposed adaptive thresholding algorithm can effectively be used for drowsiness detection and is suitable for real time drowsiness detection since the thresholds are determined adaptively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Electrode Ranking Method for Single Trial Detection of EEG Error-Related Potentials Efficacy of AR Haptic Simulation for Nursing Student Education In silico study of sensitivity of polymeric prism-based surface plasmon resonance sensors based on graphene and molybdenum disulfide layers A Social Robot with Conversational Capabilities for Visitor Reception: Design and Framework MICSurv: Medical Image Clustering for Survival risk group identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1