Hiroyuki Miyazaki, Yoshihiro Kusano, H. Okano, Tatsumi Nakada, Ken Seki, T. Shimizu, Naoki Shinjo, F. Shoji, Atsuya Uno, M. Kurokawa
{"title":"K计算机:拥有超过548k核的8.162 PetaFLOPS大规模并行标量超级计算机","authors":"Hiroyuki Miyazaki, Yoshihiro Kusano, H. Okano, Tatsumi Nakada, Ken Seki, T. Shimizu, Naoki Shinjo, F. Shoji, Atsuya Uno, M. Kurokawa","doi":"10.1109/ISSCC.2012.6176971","DOIUrl":null,"url":null,"abstract":"Many high-performance CPUs employ a multicore architecture with a moderate clock frequency and wide instruction issue, including SIMD extensions, to achieve high performance while retaining a practical power consumption. As demand for supercomputer performance grows faster than the rate that improvements are made to CPU performance, the total number of cores of high-end supercomputers has increased tremendously. Efficient handling of large numbers of cores is a key aspect in the design of supercomputers. Building a supercomputer with lower power consumption and significant reliability is also important from the viewpoints of cost and availability.","PeriodicalId":255282,"journal":{"name":"2012 IEEE International Solid-State Circuits Conference","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"K computer: 8.162 PetaFLOPS massively parallel scalar supercomputer built with over 548k cores\",\"authors\":\"Hiroyuki Miyazaki, Yoshihiro Kusano, H. Okano, Tatsumi Nakada, Ken Seki, T. Shimizu, Naoki Shinjo, F. Shoji, Atsuya Uno, M. Kurokawa\",\"doi\":\"10.1109/ISSCC.2012.6176971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many high-performance CPUs employ a multicore architecture with a moderate clock frequency and wide instruction issue, including SIMD extensions, to achieve high performance while retaining a practical power consumption. As demand for supercomputer performance grows faster than the rate that improvements are made to CPU performance, the total number of cores of high-end supercomputers has increased tremendously. Efficient handling of large numbers of cores is a key aspect in the design of supercomputers. Building a supercomputer with lower power consumption and significant reliability is also important from the viewpoints of cost and availability.\",\"PeriodicalId\":255282,\"journal\":{\"name\":\"2012 IEEE International Solid-State Circuits Conference\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2012.6176971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2012.6176971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
K computer: 8.162 PetaFLOPS massively parallel scalar supercomputer built with over 548k cores
Many high-performance CPUs employ a multicore architecture with a moderate clock frequency and wide instruction issue, including SIMD extensions, to achieve high performance while retaining a practical power consumption. As demand for supercomputer performance grows faster than the rate that improvements are made to CPU performance, the total number of cores of high-end supercomputers has increased tremendously. Efficient handling of large numbers of cores is a key aspect in the design of supercomputers. Building a supercomputer with lower power consumption and significant reliability is also important from the viewpoints of cost and availability.