基于广义离散正交斯托克韦尔变换和改进多维尺度的表面肌电信号特征提取

Somar Karheily, A. Moukadem, Jean-Baptiste Courbot, D. Abdeslam
{"title":"基于广义离散正交斯托克韦尔变换和改进多维尺度的表面肌电信号特征提取","authors":"Somar Karheily, A. Moukadem, Jean-Baptiste Courbot, D. Abdeslam","doi":"10.23919/eusipco55093.2022.9909783","DOIUrl":null,"url":null,"abstract":"This paper proposes a method based on a generalized version of the Discrete Orthonormal Stockwell Transform (GDOST) with Gaussian window to extract features from surface electromyography (sEMG) signals in order to identify hand's movements. The features space derived from the GDOST is then reduced by applying a modified Multi-Dimensional Scaling (MDS) method. The proposed modification on MDS consists in using a translation in kernel building instead of the direct distance calculation. The results are compared with another study applied on the same dataset where usual DOST and MDS are applied. We achieved significant improvements in classification accuracy, attaining 97.56% for 17 hand movements.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"sEMG feature extraction using Generalized Discrete Orthonormal Stockwell Transform and Modified Multi-Dimensional Scaling\",\"authors\":\"Somar Karheily, A. Moukadem, Jean-Baptiste Courbot, D. Abdeslam\",\"doi\":\"10.23919/eusipco55093.2022.9909783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method based on a generalized version of the Discrete Orthonormal Stockwell Transform (GDOST) with Gaussian window to extract features from surface electromyography (sEMG) signals in order to identify hand's movements. The features space derived from the GDOST is then reduced by applying a modified Multi-Dimensional Scaling (MDS) method. The proposed modification on MDS consists in using a translation in kernel building instead of the direct distance calculation. The results are compared with another study applied on the same dataset where usual DOST and MDS are applied. We achieved significant improvements in classification accuracy, attaining 97.56% for 17 hand movements.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于广义离散正交斯托克韦尔变换(GDOST)和高斯窗的方法,从肌电信号中提取特征以识别手部运动。然后采用改进的多维尺度(Multi-Dimensional Scaling, MDS)方法对GDOST得到的特征空间进行缩减。提出的改进MDS的方法是在内核构建中使用翻译来代替直接的距离计算。结果与应用于同一数据集的另一项研究进行了比较,其中应用了通常的DOST和MDS。我们在17个手部动作的分类准确率上取得了显著的提高,达到了97.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
sEMG feature extraction using Generalized Discrete Orthonormal Stockwell Transform and Modified Multi-Dimensional Scaling
This paper proposes a method based on a generalized version of the Discrete Orthonormal Stockwell Transform (GDOST) with Gaussian window to extract features from surface electromyography (sEMG) signals in order to identify hand's movements. The features space derived from the GDOST is then reduced by applying a modified Multi-Dimensional Scaling (MDS) method. The proposed modification on MDS consists in using a translation in kernel building instead of the direct distance calculation. The results are compared with another study applied on the same dataset where usual DOST and MDS are applied. We achieved significant improvements in classification accuracy, attaining 97.56% for 17 hand movements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1