贝叶斯时间序列匹配中隐私的渐近极限

Nazanin Takbiri, D. Goeckel, A. Houmansadr, H. Pishro-Nik
{"title":"贝叶斯时间序列匹配中隐私的渐近极限","authors":"Nazanin Takbiri, D. Goeckel, A. Houmansadr, H. Pishro-Nik","doi":"10.1109/CISS.2019.8692936","DOIUrl":null,"url":null,"abstract":"Various modern and highly popular applications make use of user data traces in order to offer specific services, often for the purpose of improving the user’s experience while using such applications. However, even when user data is privatized by employing privacy-preserving mechanisms (PPM), users’ privacy may still be compromised by an external party who leverages statistical matching methods to match users’ traces with their previous activities. In this paper, we obtain the theoretical bounds on user privacy for situations in which user traces are matchable to sequences of prior behavior, despite anonymization of data time series. We provide both achievability and converse results for the case where the data trace of each user consists of independent and identically distributed (i.i.d.) random samples drawn from a multinomial distribution, as well as the case that the users’ data points are dependent over time and the data trace of each user is governed by a Markov chain model.","PeriodicalId":123696,"journal":{"name":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Asymptotic Limits of Privacy in Bayesian Time Series Matching\",\"authors\":\"Nazanin Takbiri, D. Goeckel, A. Houmansadr, H. Pishro-Nik\",\"doi\":\"10.1109/CISS.2019.8692936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various modern and highly popular applications make use of user data traces in order to offer specific services, often for the purpose of improving the user’s experience while using such applications. However, even when user data is privatized by employing privacy-preserving mechanisms (PPM), users’ privacy may still be compromised by an external party who leverages statistical matching methods to match users’ traces with their previous activities. In this paper, we obtain the theoretical bounds on user privacy for situations in which user traces are matchable to sequences of prior behavior, despite anonymization of data time series. We provide both achievability and converse results for the case where the data trace of each user consists of independent and identically distributed (i.i.d.) random samples drawn from a multinomial distribution, as well as the case that the users’ data points are dependent over time and the data trace of each user is governed by a Markov chain model.\",\"PeriodicalId\":123696,\"journal\":{\"name\":\"2019 53rd Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2019.8692936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2019.8692936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

各种现代和非常流行的应用程序利用用户数据跟踪来提供特定的服务,通常是为了改善用户在使用这些应用程序时的体验。然而,即使通过使用隐私保护机制(PPM)将用户数据私人化,用户的隐私仍然可能受到外部方的损害,外部方利用统计匹配方法将用户的痕迹与其以前的活动进行匹配。在本文中,我们获得了用户跟踪与先前行为序列匹配的情况下的用户隐私的理论界限,尽管数据时间序列是匿名的。对于每个用户的数据轨迹由从多项分布中抽取的独立和同分布(i.i.d)随机样本组成的情况,以及用户的数据点随时间而依赖并且每个用户的数据轨迹由马尔可夫链模型控制的情况,我们提供了可实现性和相反的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymptotic Limits of Privacy in Bayesian Time Series Matching
Various modern and highly popular applications make use of user data traces in order to offer specific services, often for the purpose of improving the user’s experience while using such applications. However, even when user data is privatized by employing privacy-preserving mechanisms (PPM), users’ privacy may still be compromised by an external party who leverages statistical matching methods to match users’ traces with their previous activities. In this paper, we obtain the theoretical bounds on user privacy for situations in which user traces are matchable to sequences of prior behavior, despite anonymization of data time series. We provide both achievability and converse results for the case where the data trace of each user consists of independent and identically distributed (i.i.d.) random samples drawn from a multinomial distribution, as well as the case that the users’ data points are dependent over time and the data trace of each user is governed by a Markov chain model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prospect Theoretical Extension of a Communication Game Under Jamming Smoothed First-order Algorithms for Expectation-valued Constrained Problems Secure Key Generation for Distributed Inference in IoT Invited Presentation Exponential Error Bounds and Decoding Complexity for Block Codes Constructed by Unit Memory Trellis Codes of Branch Length Two Deep learning to detect catheter tips in vivo during photoacoustic-guided catheter interventions : Invited Presentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1