{"title":"用Vine Copulas预测流动性调整后的日内风险价值","authors":"Gregor N. F. Weiß, Hendrik Supper","doi":"10.2139/ssrn.2013203","DOIUrl":null,"url":null,"abstract":"We propose to model the joint distribution of bid-ask spreads and log returns of a stock portfolio by using Autoregressive Conditional Double Poisson and GARCH processes for the marginals and vine copulas for the dependence structure. By estimating the joint multivariate distribution of both returns and bid-ask spreads from intraday data, we incorporate the measurement of commonalities in liquidity and comovements of stocks and bid-ask spreads into the forecasting of three types of liquidity-adjusted intraday Value-at-Risk (L-IVaR). In a preliminary analysis, we document strong extreme comovements in liquidity and strong tail dependence between bid-ask spreads and log returns across the firms in our sample thus motivating our use of a vine copula model. Furthermore, the backtesting results for the L-IVaR of a portfolio consisting of five stocks listed on the NASDAQ show that the proposed models perform well in forecasting liquidity-adjusted intraday portfolio profits and losses.","PeriodicalId":369344,"journal":{"name":"American Finance Association Meetings (AFA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Forecasting Liquidity-Adjusted Intraday Value-at-Risk with Vine Copulas\",\"authors\":\"Gregor N. F. Weiß, Hendrik Supper\",\"doi\":\"10.2139/ssrn.2013203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose to model the joint distribution of bid-ask spreads and log returns of a stock portfolio by using Autoregressive Conditional Double Poisson and GARCH processes for the marginals and vine copulas for the dependence structure. By estimating the joint multivariate distribution of both returns and bid-ask spreads from intraday data, we incorporate the measurement of commonalities in liquidity and comovements of stocks and bid-ask spreads into the forecasting of three types of liquidity-adjusted intraday Value-at-Risk (L-IVaR). In a preliminary analysis, we document strong extreme comovements in liquidity and strong tail dependence between bid-ask spreads and log returns across the firms in our sample thus motivating our use of a vine copula model. Furthermore, the backtesting results for the L-IVaR of a portfolio consisting of five stocks listed on the NASDAQ show that the proposed models perform well in forecasting liquidity-adjusted intraday portfolio profits and losses.\",\"PeriodicalId\":369344,\"journal\":{\"name\":\"American Finance Association Meetings (AFA)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Finance Association Meetings (AFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2013203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Finance Association Meetings (AFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2013203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forecasting Liquidity-Adjusted Intraday Value-at-Risk with Vine Copulas
We propose to model the joint distribution of bid-ask spreads and log returns of a stock portfolio by using Autoregressive Conditional Double Poisson and GARCH processes for the marginals and vine copulas for the dependence structure. By estimating the joint multivariate distribution of both returns and bid-ask spreads from intraday data, we incorporate the measurement of commonalities in liquidity and comovements of stocks and bid-ask spreads into the forecasting of three types of liquidity-adjusted intraday Value-at-Risk (L-IVaR). In a preliminary analysis, we document strong extreme comovements in liquidity and strong tail dependence between bid-ask spreads and log returns across the firms in our sample thus motivating our use of a vine copula model. Furthermore, the backtesting results for the L-IVaR of a portfolio consisting of five stocks listed on the NASDAQ show that the proposed models perform well in forecasting liquidity-adjusted intraday portfolio profits and losses.