{"title":"一种新的网页摘要方法","authors":"Q. Diao, Jiulong Shan","doi":"10.1145/1148170.1148294","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel multi-webpage summarization algorithm. It adds the graph based ranking algorithm into the framework of Maximum Marginal Relevance (MMR) method, to not only capture the main topic of the web pages but also eliminate the redundancy existing in the sentences of the summary result. The experiment result indicates that the new approach has the better performance than the previous methods.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A new web page summarization method\",\"authors\":\"Q. Diao, Jiulong Shan\",\"doi\":\"10.1145/1148170.1148294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel multi-webpage summarization algorithm. It adds the graph based ranking algorithm into the framework of Maximum Marginal Relevance (MMR) method, to not only capture the main topic of the web pages but also eliminate the redundancy existing in the sentences of the summary result. The experiment result indicates that the new approach has the better performance than the previous methods.\",\"PeriodicalId\":433366,\"journal\":{\"name\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1148170.1148294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种新的多网页摘要算法。它将基于图的排序算法加入到最大边际相关性(MMR)方法的框架中,既能捕捉网页的主题,又能消除摘要结果中句子中的冗余。实验结果表明,该方法比以往的方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new web page summarization method
In this paper, we present a novel multi-webpage summarization algorithm. It adds the graph based ranking algorithm into the framework of Maximum Marginal Relevance (MMR) method, to not only capture the main topic of the web pages but also eliminate the redundancy existing in the sentences of the summary result. The experiment result indicates that the new approach has the better performance than the previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strict and vague interpretation of XML-retrieval queries AggregateRank: bringing order to web sites Text clustering with extended user feedback Improving personalized web search using result diversification High accuracy retrieval with multiple nested ranker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1