基于子结构感知的分子表征学习的组合药物推荐

Nianzu Yang, Kaipeng Zeng, Qitian Wu, Junchi Yan
{"title":"基于子结构感知的分子表征学习的组合药物推荐","authors":"Nianzu Yang, Kaipeng Zeng, Qitian Wu, Junchi Yan","doi":"10.1145/3543507.3583872","DOIUrl":null,"url":null,"abstract":"Combinatorial drug recommendation involves recommending a personalized combination of medication (drugs) to a patient over his/her longitudinal history, which essentially aims at solving a combinatorial optimization problem that pursues high accuracy under the safety constraint. Among existing learning-based approaches, the association between drug substructures (i.e., a sub-graph of the molecule that contributes to certain chemical effect) and the target disease is largely overlooked, though the function of drugs in fact exhibits strong relevance with particular substructures. To address this issue, we propose a molecular substructure-aware encoding method entitled MoleRec that entails a hierarchical architecture aimed at modeling inter-substructure interactions and individual substructures’ impact on patient’s health condition, in order to identify those substructures that really contribute to healing patients. Specifically, MoleRec learns to attentively pooling over substructure representations which will be element-wisely re-scaled by the model’s inferred relevancy with a patient’s health condition to obtain a prior-knowledge-informed drug representation. We further design a weight annealing strategy for drug-drug-interaction (DDI) objective to adaptively control the balance between accuracy and safety criteria throughout training. Experiments on the MIMIC-III dataset demonstrate that our approach achieves new state-of-the-art performance w.r.t. four accuracy and safety metrics. Our source code is publicly available at https://github.com/yangnianzu0515/MoleRec.","PeriodicalId":296351,"journal":{"name":"Proceedings of the ACM Web Conference 2023","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"MoleRec: Combinatorial Drug Recommendation with Substructure-Aware Molecular Representation Learning\",\"authors\":\"Nianzu Yang, Kaipeng Zeng, Qitian Wu, Junchi Yan\",\"doi\":\"10.1145/3543507.3583872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combinatorial drug recommendation involves recommending a personalized combination of medication (drugs) to a patient over his/her longitudinal history, which essentially aims at solving a combinatorial optimization problem that pursues high accuracy under the safety constraint. Among existing learning-based approaches, the association between drug substructures (i.e., a sub-graph of the molecule that contributes to certain chemical effect) and the target disease is largely overlooked, though the function of drugs in fact exhibits strong relevance with particular substructures. To address this issue, we propose a molecular substructure-aware encoding method entitled MoleRec that entails a hierarchical architecture aimed at modeling inter-substructure interactions and individual substructures’ impact on patient’s health condition, in order to identify those substructures that really contribute to healing patients. Specifically, MoleRec learns to attentively pooling over substructure representations which will be element-wisely re-scaled by the model’s inferred relevancy with a patient’s health condition to obtain a prior-knowledge-informed drug representation. We further design a weight annealing strategy for drug-drug-interaction (DDI) objective to adaptively control the balance between accuracy and safety criteria throughout training. Experiments on the MIMIC-III dataset demonstrate that our approach achieves new state-of-the-art performance w.r.t. four accuracy and safety metrics. Our source code is publicly available at https://github.com/yangnianzu0515/MoleRec.\",\"PeriodicalId\":296351,\"journal\":{\"name\":\"Proceedings of the ACM Web Conference 2023\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Web Conference 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543507.3583872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Web Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543507.3583872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

组合推荐药物是根据患者的纵向病史,向患者推荐个性化的药物组合,其本质是解决在安全约束下追求高精度的组合优化问题。在现有的基于学习的方法中,药物亚结构(即,有助于某些化学作用的分子的子图)与目标疾病之间的关联在很大程度上被忽视,尽管药物的功能实际上与特定的亚结构有很强的相关性。为了解决这个问题,我们提出了一种名为MoleRec的分子子结构感知编码方法,该方法需要一个分层结构,旨在模拟子结构之间的相互作用和单个子结构对患者健康状况的影响,以确定那些真正有助于治愈患者的子结构。具体来说,MoleRec学会了对子结构表征进行集中,这些表征将根据模型与患者健康状况的推断相关性进行元素明智地重新缩放,以获得先验知识知情的药物表征。我们进一步设计了药物-药物相互作用(DDI)目标的权值退火策略,在整个训练过程中自适应控制准确性和安全性标准之间的平衡。在MIMIC-III数据集上的实验表明,我们的方法实现了新的最先进的性能,包括四个精度和安全性指标。我们的源代码可以在https://github.com/yangnianzu0515/MoleRec上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MoleRec: Combinatorial Drug Recommendation with Substructure-Aware Molecular Representation Learning
Combinatorial drug recommendation involves recommending a personalized combination of medication (drugs) to a patient over his/her longitudinal history, which essentially aims at solving a combinatorial optimization problem that pursues high accuracy under the safety constraint. Among existing learning-based approaches, the association between drug substructures (i.e., a sub-graph of the molecule that contributes to certain chemical effect) and the target disease is largely overlooked, though the function of drugs in fact exhibits strong relevance with particular substructures. To address this issue, we propose a molecular substructure-aware encoding method entitled MoleRec that entails a hierarchical architecture aimed at modeling inter-substructure interactions and individual substructures’ impact on patient’s health condition, in order to identify those substructures that really contribute to healing patients. Specifically, MoleRec learns to attentively pooling over substructure representations which will be element-wisely re-scaled by the model’s inferred relevancy with a patient’s health condition to obtain a prior-knowledge-informed drug representation. We further design a weight annealing strategy for drug-drug-interaction (DDI) objective to adaptively control the balance between accuracy and safety criteria throughout training. Experiments on the MIMIC-III dataset demonstrate that our approach achieves new state-of-the-art performance w.r.t. four accuracy and safety metrics. Our source code is publicly available at https://github.com/yangnianzu0515/MoleRec.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CurvDrop: A Ricci Curvature Based Approach to Prevent Graph Neural Networks from Over-Smoothing and Over-Squashing Learning to Simulate Crowd Trajectories with Graph Networks Word Sense Disambiguation by Refining Target Word Embedding Curriculum Graph Poisoning Optimizing Guided Traversal for Fast Learned Sparse Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1