融合头部和姿态特征的群像造型分类

Kai Wang, Congwei Guo, Zhuang Zhao, Yongzhen Ke, Shuai Yang
{"title":"融合头部和姿态特征的群像造型分类","authors":"Kai Wang, Congwei Guo, Zhuang Zhao, Yongzhen Ke, Shuai Yang","doi":"10.1142/s1469026823500104","DOIUrl":null,"url":null,"abstract":"Group photo images are everywhere and vary greatly by the shooting scene. Compared with common images, the Image Aesthetic Quality Assessment (IAQI) of group photo pays more attention to the relevant characteristics of the main population. Still, the existing methods do not make further special research on group photos. Therefore, we propose a new concept of group photo styling based on analyzing group photos and photographic theory. Besides that, by comparing and analyzing many group photos, we classify the group photos into five categories. In this paper, the main factors of the head and pose are considered simultaneously, and the method of Group Photo Styling Classification (GPSC) can classify different group photos automatically. To verify the effectiveness of our method, we collected a Group Photo Styling Dataset (GPSD). The dataset contains 998 group photo images, and each image’s group photo styling category is marked. The experimental results on GPSD show that the fusion of head features and pose features can classify different group photos well. The accuracy of GPSC reaches 93.9%, much higher than the previous classification model.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Styling Classification of Group Photos Fusing Head and Pose Features\",\"authors\":\"Kai Wang, Congwei Guo, Zhuang Zhao, Yongzhen Ke, Shuai Yang\",\"doi\":\"10.1142/s1469026823500104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Group photo images are everywhere and vary greatly by the shooting scene. Compared with common images, the Image Aesthetic Quality Assessment (IAQI) of group photo pays more attention to the relevant characteristics of the main population. Still, the existing methods do not make further special research on group photos. Therefore, we propose a new concept of group photo styling based on analyzing group photos and photographic theory. Besides that, by comparing and analyzing many group photos, we classify the group photos into five categories. In this paper, the main factors of the head and pose are considered simultaneously, and the method of Group Photo Styling Classification (GPSC) can classify different group photos automatically. To verify the effectiveness of our method, we collected a Group Photo Styling Dataset (GPSD). The dataset contains 998 group photo images, and each image’s group photo styling category is marked. The experimental results on GPSD show that the fusion of head features and pose features can classify different group photos well. The accuracy of GPSC reaches 93.9%, much higher than the previous classification model.\",\"PeriodicalId\":422521,\"journal\":{\"name\":\"Int. J. Comput. Intell. Appl.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Intell. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1469026823500104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026823500104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

集体照随处可见,不同的拍摄场景差别很大。与普通图像相比,集体照的图像审美质量评价(IAQI)更关注主体人群的相关特征。然而,现有的方法并没有对集体照片进行进一步的专门研究。因此,我们在分析集体照和摄影理论的基础上,提出了集体照造型的新概念。此外,通过对大量的集体照进行对比分析,我们将集体照分为五类。本文同时考虑了头部和姿态的主要影响因素,提出了一种基于GPSC的集体照样式分类方法,可以对不同的集体照进行自动分类。为了验证我们方法的有效性,我们收集了一个团体照片样式数据集(GPSD)。该数据集包含998张集体照图像,并标记了每个图像的集体照样式类别。GPSD的实验结果表明,融合头部特征和姿态特征可以很好地分类不同的群体照片。GPSC的准确率达到93.9%,大大高于以往的分类模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Styling Classification of Group Photos Fusing Head and Pose Features
Group photo images are everywhere and vary greatly by the shooting scene. Compared with common images, the Image Aesthetic Quality Assessment (IAQI) of group photo pays more attention to the relevant characteristics of the main population. Still, the existing methods do not make further special research on group photos. Therefore, we propose a new concept of group photo styling based on analyzing group photos and photographic theory. Besides that, by comparing and analyzing many group photos, we classify the group photos into five categories. In this paper, the main factors of the head and pose are considered simultaneously, and the method of Group Photo Styling Classification (GPSC) can classify different group photos automatically. To verify the effectiveness of our method, we collected a Group Photo Styling Dataset (GPSD). The dataset contains 998 group photo images, and each image’s group photo styling category is marked. The experimental results on GPSD show that the fusion of head features and pose features can classify different group photos well. The accuracy of GPSC reaches 93.9%, much higher than the previous classification model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CT Images Segmentation Using a Deep Learning-Based Approach for Preoperative Projection of Human Organ Model Using Augmented Reality Technology Styling Classification of Group Photos Fusing Head and Pose Features Genetic Algorithm-Based Optimal Resource Trust Line Prediction in Cloud Computing Shearlet Transform-Based Novel Method for Multimodality Medical Image Fusion Using Deep Learning An Energy-Efficient Clustering and Fuzzy-Based Path Selection for Flying Ad-Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1