用于发现隐藏链接的文本挖掘方法

Guangrong Li, Xiaodan Zhang, Illhoi Yoo, Xiaohua Zhou
{"title":"用于发现隐藏链接的文本挖掘方法","authors":"Guangrong Li, Xiaodan Zhang, Illhoi Yoo, Xiaohua Zhou","doi":"10.1109/GRC.2009.5255095","DOIUrl":null,"url":null,"abstract":"This paper presents a Biomedical Semantic-based Association Rule method that significantly reduces irrelevant connections through semantic filtering. The experiment result shows that compared to traditional association rule-based approach, our approach generates much fewer rules and a lot of these rules represent relevant connections among biological concepts.","PeriodicalId":388774,"journal":{"name":"2009 IEEE International Conference on Granular Computing","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A text mining method for discovering hidden links\",\"authors\":\"Guangrong Li, Xiaodan Zhang, Illhoi Yoo, Xiaohua Zhou\",\"doi\":\"10.1109/GRC.2009.5255095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Biomedical Semantic-based Association Rule method that significantly reduces irrelevant connections through semantic filtering. The experiment result shows that compared to traditional association rule-based approach, our approach generates much fewer rules and a lot of these rules represent relevant connections among biological concepts.\",\"PeriodicalId\":388774,\"journal\":{\"name\":\"2009 IEEE International Conference on Granular Computing\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Granular Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRC.2009.5255095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2009.5255095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于生物医学语义的关联规则方法,通过语义过滤显著减少了不相关连接。实验结果表明,与传统的基于关联规则的方法相比,我们的方法生成的规则要少得多,而且这些规则中有很多代表了生物概念之间的相关联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A text mining method for discovering hidden links
This paper presents a Biomedical Semantic-based Association Rule method that significantly reduces irrelevant connections through semantic filtering. The experiment result shows that compared to traditional association rule-based approach, our approach generates much fewer rules and a lot of these rules represent relevant connections among biological concepts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On SP-closedness in L-topological spaces A comprehensive evaluation method based on extenics and rough set A two-step approach for solving the flexible job shop scheduling problem A fast and accurate collaborative filter Attribute Grid Computer based on Qualitative Mapping and its application in pattern Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1