{"title":"基于深度学习的脑电信号BCI情绪分类研究进展","authors":"Puja A. Chavan, S. Desai","doi":"10.3233/apc210241","DOIUrl":null,"url":null,"abstract":"Emotion awareness is one of the most important subjects in the field of affective computing. Using nonverbal behavioral methods such as recognition of facial expression, verbal behavioral method, recognition of speech emotion, or physiological signals-based methods such as recognition of emotions based on electroencephalogram (EEG) can predict human emotion. However, it is notable that data obtained from either nonverbal or verbal behaviors are indirect emotional signals suggesting brain activity. Unlike the nonverbal or verbal actions, EEG signals are reported directly from the human brain cortex and thus may be more effective in representing the inner emotional states of the brain. Consequently, when used to measure human emotion, the use of EEG data can be more accurate than data on behavior. For this reason, the identification of human emotion from EEG signals has become a very important research subject in current emotional brain-computer interfaces (BCIs) aimed at inferring human emotional states based on the EEG signals recorded. In this paper, a hybrid deep learning approach has proposed using CNN and a long short-term memory (LSTM) algorithm is investigated for the purpose of automatic classification of epileptic disease from EEG signals. The signals have been processed by CNN for feature extraction from runtime environment while LSTM has used for classification of entire data. Finally, system demonstrates each EEG data file as normal or epileptic disease. In this research to describes a state of art for effective epileptic disease detection prediction and classification using hybrid deep learning algorithms. This research demonstrates a collaboration of CNN and LSTM for entire classification of EEG signals in numerous existing systems.","PeriodicalId":429440,"journal":{"name":"Recent Trends in Intensive Computing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Review on BCI Emotions Classification for EEG Signals Using Deep Learning\",\"authors\":\"Puja A. Chavan, S. Desai\",\"doi\":\"10.3233/apc210241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion awareness is one of the most important subjects in the field of affective computing. Using nonverbal behavioral methods such as recognition of facial expression, verbal behavioral method, recognition of speech emotion, or physiological signals-based methods such as recognition of emotions based on electroencephalogram (EEG) can predict human emotion. However, it is notable that data obtained from either nonverbal or verbal behaviors are indirect emotional signals suggesting brain activity. Unlike the nonverbal or verbal actions, EEG signals are reported directly from the human brain cortex and thus may be more effective in representing the inner emotional states of the brain. Consequently, when used to measure human emotion, the use of EEG data can be more accurate than data on behavior. For this reason, the identification of human emotion from EEG signals has become a very important research subject in current emotional brain-computer interfaces (BCIs) aimed at inferring human emotional states based on the EEG signals recorded. In this paper, a hybrid deep learning approach has proposed using CNN and a long short-term memory (LSTM) algorithm is investigated for the purpose of automatic classification of epileptic disease from EEG signals. The signals have been processed by CNN for feature extraction from runtime environment while LSTM has used for classification of entire data. Finally, system demonstrates each EEG data file as normal or epileptic disease. In this research to describes a state of art for effective epileptic disease detection prediction and classification using hybrid deep learning algorithms. This research demonstrates a collaboration of CNN and LSTM for entire classification of EEG signals in numerous existing systems.\",\"PeriodicalId\":429440,\"journal\":{\"name\":\"Recent Trends in Intensive Computing\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Trends in Intensive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/apc210241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Intensive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/apc210241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Review on BCI Emotions Classification for EEG Signals Using Deep Learning
Emotion awareness is one of the most important subjects in the field of affective computing. Using nonverbal behavioral methods such as recognition of facial expression, verbal behavioral method, recognition of speech emotion, or physiological signals-based methods such as recognition of emotions based on electroencephalogram (EEG) can predict human emotion. However, it is notable that data obtained from either nonverbal or verbal behaviors are indirect emotional signals suggesting brain activity. Unlike the nonverbal or verbal actions, EEG signals are reported directly from the human brain cortex and thus may be more effective in representing the inner emotional states of the brain. Consequently, when used to measure human emotion, the use of EEG data can be more accurate than data on behavior. For this reason, the identification of human emotion from EEG signals has become a very important research subject in current emotional brain-computer interfaces (BCIs) aimed at inferring human emotional states based on the EEG signals recorded. In this paper, a hybrid deep learning approach has proposed using CNN and a long short-term memory (LSTM) algorithm is investigated for the purpose of automatic classification of epileptic disease from EEG signals. The signals have been processed by CNN for feature extraction from runtime environment while LSTM has used for classification of entire data. Finally, system demonstrates each EEG data file as normal or epileptic disease. In this research to describes a state of art for effective epileptic disease detection prediction and classification using hybrid deep learning algorithms. This research demonstrates a collaboration of CNN and LSTM for entire classification of EEG signals in numerous existing systems.