{"title":"社交媒体生活事件分类的多分类器系统","authors":"P. Cavalin, L. G. Moyano, Pedro P. Miranda","doi":"10.1109/ICDMW.2015.182","DOIUrl":null,"url":null,"abstract":"In this work we present a Conversation Classifierbased on Multiple Classifiers, to detect Life Events on SocialMedia. In one hand, conversations can provide more contextand help disambiguate life event detection, compared with single posts. On the other hand, the increase in number of messages and the way they interact with each other within the conversation cannot be trivially modeled by a classifier. To tackle this problem, we focus on creating a set of classifiers from different feature sets, and combining their classification outputs to improve accuracy. The experiments show that multiple classifiers are promising for this problem, being able to present an increase of about 45% in the F-Score.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Multiple Classifier System for Classifying Life Events on Social Media\",\"authors\":\"P. Cavalin, L. G. Moyano, Pedro P. Miranda\",\"doi\":\"10.1109/ICDMW.2015.182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a Conversation Classifierbased on Multiple Classifiers, to detect Life Events on SocialMedia. In one hand, conversations can provide more contextand help disambiguate life event detection, compared with single posts. On the other hand, the increase in number of messages and the way they interact with each other within the conversation cannot be trivially modeled by a classifier. To tackle this problem, we focus on creating a set of classifiers from different feature sets, and combining their classification outputs to improve accuracy. The experiments show that multiple classifiers are promising for this problem, being able to present an increase of about 45% in the F-Score.\",\"PeriodicalId\":192888,\"journal\":{\"name\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2015.182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multiple Classifier System for Classifying Life Events on Social Media
In this work we present a Conversation Classifierbased on Multiple Classifiers, to detect Life Events on SocialMedia. In one hand, conversations can provide more contextand help disambiguate life event detection, compared with single posts. On the other hand, the increase in number of messages and the way they interact with each other within the conversation cannot be trivially modeled by a classifier. To tackle this problem, we focus on creating a set of classifiers from different feature sets, and combining their classification outputs to improve accuracy. The experiments show that multiple classifiers are promising for this problem, being able to present an increase of about 45% in the F-Score.