基于数据聚类的基因选择方法优化肿瘤分类

Kefaya Qaddoum
{"title":"基于数据聚类的基因选择方法优化肿瘤分类","authors":"Kefaya Qaddoum","doi":"10.1109/ICIIBMS.2018.8549951","DOIUrl":null,"url":null,"abstract":"This paper introduces an advanced approach to classify tumor type by microarray gene selection records. The method utilizes gene selection based on shuffling in connection with optimized data clustering. Merging Artificial Bee Colony (ABC) with genetic algorithm (GA) as a clustering tool to choose the key genes develops a new hybrid algorithm, ABC-GA. Support Vector Machine recursive feature elimination (SVM-RFE) and Multilayer Perceptron (MLP) artificial neural networks were used to enhance accuracy. Nonetheless, outcomes show that using shuffling in clustering strengthen classification accuracy significantly. The suggested algorithm (ABC-GA) performs better than Swarm optimization technique (PSO) in reaching good classification results. Better precision has been achieved using (SVM-RFE) classifier against MLP","PeriodicalId":430326,"journal":{"name":"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene Selection Approach Utilizing Data Clustering Based Technique Optimization for Tumor Classification\",\"authors\":\"Kefaya Qaddoum\",\"doi\":\"10.1109/ICIIBMS.2018.8549951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an advanced approach to classify tumor type by microarray gene selection records. The method utilizes gene selection based on shuffling in connection with optimized data clustering. Merging Artificial Bee Colony (ABC) with genetic algorithm (GA) as a clustering tool to choose the key genes develops a new hybrid algorithm, ABC-GA. Support Vector Machine recursive feature elimination (SVM-RFE) and Multilayer Perceptron (MLP) artificial neural networks were used to enhance accuracy. Nonetheless, outcomes show that using shuffling in clustering strengthen classification accuracy significantly. The suggested algorithm (ABC-GA) performs better than Swarm optimization technique (PSO) in reaching good classification results. Better precision has been achieved using (SVM-RFE) classifier against MLP\",\"PeriodicalId\":430326,\"journal\":{\"name\":\"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIBMS.2018.8549951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS.2018.8549951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用微阵列基因选择记录来分类肿瘤类型的新方法。该方法将基于洗牌的基因选择与优化的数据聚类相结合。将人工蜂群算法(ABC)与遗传算法(GA)作为聚类工具进行关键基因选择,提出了一种新的混合算法ABC-GA。支持向量机的递归特性消除(SVM-RFE)和多层感知器(MLP)人工神经网络用于提高准确性。尽管如此,结果表明,在聚类中使用洗牌可以显著提高分类精度。本文提出的算法(ABC-GA)在分类效果上优于群优化算法(PSO)。使用(SVM-RFE)分类器对MLP获得了更好的精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gene Selection Approach Utilizing Data Clustering Based Technique Optimization for Tumor Classification
This paper introduces an advanced approach to classify tumor type by microarray gene selection records. The method utilizes gene selection based on shuffling in connection with optimized data clustering. Merging Artificial Bee Colony (ABC) with genetic algorithm (GA) as a clustering tool to choose the key genes develops a new hybrid algorithm, ABC-GA. Support Vector Machine recursive feature elimination (SVM-RFE) and Multilayer Perceptron (MLP) artificial neural networks were used to enhance accuracy. Nonetheless, outcomes show that using shuffling in clustering strengthen classification accuracy significantly. The suggested algorithm (ABC-GA) performs better than Swarm optimization technique (PSO) in reaching good classification results. Better precision has been achieved using (SVM-RFE) classifier against MLP
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuronal Dynamic Framework of Cerebral Cortical Networks for Spontaneous Behaviors User Experience Evaluation on the Cryptocurrency Website by Trust Aspect Energy and Cost Efficient Navigation Technique for the Visually Impaired Transforming Auto-Encoder and Decoder Network for Pediatric Bone Image Segmentation using a State-of-the-art Semantic Segmentation network on Bone Radiographs Observer design of high throughput screening system based on dioid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1