Marwa Chaabane, M. Mansouri, H. Nounou, M. Nounou, M. Slima, A. Hamida
{"title":"基于核PLS的GLR结构健康监测损伤检测","authors":"Marwa Chaabane, M. Mansouri, H. Nounou, M. Nounou, M. Slima, A. Hamida","doi":"10.1109/ATSIP.2017.8075555","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to extend the applicability of the GLR method to a wide range of practical systems. Most real systems are nonlinear, multivariate, and are best represented by input-output type of models. Kernel partial least squares (KPLS) models have been widely used to represent such systems. Therefore, in this paper, kernel PLS-based GLR method will be utilized in practice to improve damage detection in Structural Health Monitoring (SHM). The developed kernel PLS-based GLR technique combines the benefits of the multivariate input-output kernel PLS model and the statistical fault detection GLR statistic which showed performance in the cases where process models are not available. GLR is a well-known statistical detection method that relies on maximizing the detection probability for a given false alarm rate. To calculate the kernel PLS model, we use the data collected from the complex 3DOF spring-mass-dashpot system. The simulation results show improved performance of kernel PLS-based GLR in damage detection compared to the classical kernel PLS method.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Damage detection in structural health monitoring using kernel PLS based GLR\",\"authors\":\"Marwa Chaabane, M. Mansouri, H. Nounou, M. Nounou, M. Slima, A. Hamida\",\"doi\":\"10.1109/ATSIP.2017.8075555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to extend the applicability of the GLR method to a wide range of practical systems. Most real systems are nonlinear, multivariate, and are best represented by input-output type of models. Kernel partial least squares (KPLS) models have been widely used to represent such systems. Therefore, in this paper, kernel PLS-based GLR method will be utilized in practice to improve damage detection in Structural Health Monitoring (SHM). The developed kernel PLS-based GLR technique combines the benefits of the multivariate input-output kernel PLS model and the statistical fault detection GLR statistic which showed performance in the cases where process models are not available. GLR is a well-known statistical detection method that relies on maximizing the detection probability for a given false alarm rate. To calculate the kernel PLS model, we use the data collected from the complex 3DOF spring-mass-dashpot system. The simulation results show improved performance of kernel PLS-based GLR in damage detection compared to the classical kernel PLS method.\",\"PeriodicalId\":259951,\"journal\":{\"name\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2017.8075555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Damage detection in structural health monitoring using kernel PLS based GLR
The objective of this paper is to extend the applicability of the GLR method to a wide range of practical systems. Most real systems are nonlinear, multivariate, and are best represented by input-output type of models. Kernel partial least squares (KPLS) models have been widely used to represent such systems. Therefore, in this paper, kernel PLS-based GLR method will be utilized in practice to improve damage detection in Structural Health Monitoring (SHM). The developed kernel PLS-based GLR technique combines the benefits of the multivariate input-output kernel PLS model and the statistical fault detection GLR statistic which showed performance in the cases where process models are not available. GLR is a well-known statistical detection method that relies on maximizing the detection probability for a given false alarm rate. To calculate the kernel PLS model, we use the data collected from the complex 3DOF spring-mass-dashpot system. The simulation results show improved performance of kernel PLS-based GLR in damage detection compared to the classical kernel PLS method.