混合光滑Besov类的m项逼近贪心型算法

Peixin Ye, Qing He
{"title":"混合光滑Besov类的m项逼近贪心型算法","authors":"Peixin Ye, Qing He","doi":"10.1109/ICNC.2007.200","DOIUrl":null,"url":null,"abstract":"We propose an greedy-type adaptive compression numerical algorithm in best m-term approximation. This algorithm provides the asymptotically optimal approximation by tensor product wavelet-type basis for functions from periodic Besov class with mixed smoothness in the Lq norm. Moreover it depends only on the expansion of function f by tensor product wavelet-type basis but neither on q nor on any special features of f.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Greedy-type Algorithm in m-term Approximation For Besov Class with Mixed Smoothness\",\"authors\":\"Peixin Ye, Qing He\",\"doi\":\"10.1109/ICNC.2007.200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an greedy-type adaptive compression numerical algorithm in best m-term approximation. This algorithm provides the asymptotically optimal approximation by tensor product wavelet-type basis for functions from periodic Besov class with mixed smoothness in the Lq norm. Moreover it depends only on the expansion of function f by tensor product wavelet-type basis but neither on q nor on any special features of f.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种最佳m项逼近下的贪婪型自适应压缩数值算法。该算法利用张量积小波基对Lq范数上混合光滑的周期Besov类函数给出渐近最优逼近。此外,它只依赖于函数f由张量积小波型基展开,而不依赖于q或f的任何特殊特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Greedy-type Algorithm in m-term Approximation For Besov Class with Mixed Smoothness
We propose an greedy-type adaptive compression numerical algorithm in best m-term approximation. This algorithm provides the asymptotically optimal approximation by tensor product wavelet-type basis for functions from periodic Besov class with mixed smoothness in the Lq norm. Moreover it depends only on the expansion of function f by tensor product wavelet-type basis but neither on q nor on any special features of f.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1