自然语音与基于hts的合成语音的非线性分析

H. Patil, S. Adarsa
{"title":"自然语音与基于hts的合成语音的非线性分析","authors":"H. Patil, S. Adarsa","doi":"10.1109/IALP.2014.6973518","DOIUrl":null,"url":null,"abstract":"Many investigations on speech nonlinearities have been carried out and these studies provide strong evidences to support nonlinear system modelling of speech production. The nonlinear characteristics that these studies point to are analogous to chaotic systems. This paper aims to provide evidence of chaotic nature of speech signal and use it for feature extraction to distinguish synthetic and natural speech. The feature used to extract chaos is Lyapunov Exponent (LE). The synthetic speech is found to have higher values of LE in comparison with natural speech. We propose a new feature based on LE for detection of synthetic speech. The synthetic speech used is from Hidden Markov Model (HMM)-based speech synthesis system (HTS) trained using low resource Indian language-Gujarati. This work may find its application for improving robustness of speaker verification (SV) systems against imposture attack using synthetic speech.","PeriodicalId":117334,"journal":{"name":"2014 International Conference on Asian Language Processing (IALP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear analysis of natural vs. HTS-based synthetic speech\",\"authors\":\"H. Patil, S. Adarsa\",\"doi\":\"10.1109/IALP.2014.6973518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many investigations on speech nonlinearities have been carried out and these studies provide strong evidences to support nonlinear system modelling of speech production. The nonlinear characteristics that these studies point to are analogous to chaotic systems. This paper aims to provide evidence of chaotic nature of speech signal and use it for feature extraction to distinguish synthetic and natural speech. The feature used to extract chaos is Lyapunov Exponent (LE). The synthetic speech is found to have higher values of LE in comparison with natural speech. We propose a new feature based on LE for detection of synthetic speech. The synthetic speech used is from Hidden Markov Model (HMM)-based speech synthesis system (HTS) trained using low resource Indian language-Gujarati. This work may find its application for improving robustness of speaker verification (SV) systems against imposture attack using synthetic speech.\",\"PeriodicalId\":117334,\"journal\":{\"name\":\"2014 International Conference on Asian Language Processing (IALP)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2014.6973518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2014.6973518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多关于语音非线性的研究已经开展,这些研究为支持语音产生的非线性系统建模提供了有力的证据。这些研究指出的非线性特性类似于混沌系统。本文旨在提供语音信号混沌性的证据,并将其用于特征提取来区分合成语音和自然语音。用来提取混沌的特征是李雅普诺夫指数(Lyapunov index, LE)。与自然语音相比,合成语音具有更高的LE值。我们提出了一种基于LE的合成语音检测新特征。所使用的合成语音来自基于隐马尔可夫模型(HMM)的语音合成系统(HTS),该系统使用低资源印度语言古吉拉特语进行训练。这项工作可能会发现其应用于提高说话人验证(SV)系统的鲁棒性,以对抗使用合成语音的冒充攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear analysis of natural vs. HTS-based synthetic speech
Many investigations on speech nonlinearities have been carried out and these studies provide strong evidences to support nonlinear system modelling of speech production. The nonlinear characteristics that these studies point to are analogous to chaotic systems. This paper aims to provide evidence of chaotic nature of speech signal and use it for feature extraction to distinguish synthetic and natural speech. The feature used to extract chaos is Lyapunov Exponent (LE). The synthetic speech is found to have higher values of LE in comparison with natural speech. We propose a new feature based on LE for detection of synthetic speech. The synthetic speech used is from Hidden Markov Model (HMM)-based speech synthesis system (HTS) trained using low resource Indian language-Gujarati. This work may find its application for improving robustness of speaker verification (SV) systems against imposture attack using synthetic speech.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic detection of subject/object drops in Bengali Which performs better for new word detection, character based or Chinese Word Segmentation based? Effectiveness of multiscale fractal dimension-based phonetic segmentation in speech synthesis for low resource language A Cepstral Mean Subtraction based features for Singer Identification The analysis on mistaken segmentation of Tibetan words based on statistical method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1