{"title":"一种用于使用alamouti编码的MIMO-OFDM移动通信系统的频域预均衡器","authors":"P. Baracca, N. Benvenuto, L. Vangelista","doi":"10.1109/SPAWC.2011.5990418","DOIUrl":null,"url":null,"abstract":"Orthogonal frequency division multiplexing (OFDM) is a very popular modulation scheme because it requires a very simple receiver in transforming a frequency-selective channel into multiple flat-fading channels. Furthermore, multiple-input-multiple-output (MIMO) OFDM systems employing transmit diversity techniques, such as space-time (ST) and space-frequency (SF) coding, increase robustness and reliability over wireless fading channels. However, time-variation of the channel due to mobility disrupts orthogonality among subcarriers and yields intercarrier interference (ICI), limiting the performance of OFDM. In this paper we first recall a reduced-complexity technique to mitigate ICI in single-input-single-output (SISO) OFDM systems denoted per sub-block equalization (PSE) which operates on sub-blocks of the received OFDM symbol. Next we propose an extension of PSE to MIMO SF-OFDM systems. In particular, the Alamouti scheme is used in conjunction with PSE to combat ICI. Performance of the proposed scheme is evaluated for mobile digital video broadcasting DVB-T2 2 × 1 and 2 × 2 MIMO scenarios that suit with a possible extension to handheld devices in a next generation DVB-H. Numerical results show that the new receiver provides a gain from 21% to 33% with respect to the conventional OFDM receiver in terms of vehicular speed at which a target bit error rate can be maintained.","PeriodicalId":102244,"journal":{"name":"2011 IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A frequency domain pre-equalizer for MIMO-OFDM mobile communication systems employing alamouti coding\",\"authors\":\"P. Baracca, N. Benvenuto, L. Vangelista\",\"doi\":\"10.1109/SPAWC.2011.5990418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orthogonal frequency division multiplexing (OFDM) is a very popular modulation scheme because it requires a very simple receiver in transforming a frequency-selective channel into multiple flat-fading channels. Furthermore, multiple-input-multiple-output (MIMO) OFDM systems employing transmit diversity techniques, such as space-time (ST) and space-frequency (SF) coding, increase robustness and reliability over wireless fading channels. However, time-variation of the channel due to mobility disrupts orthogonality among subcarriers and yields intercarrier interference (ICI), limiting the performance of OFDM. In this paper we first recall a reduced-complexity technique to mitigate ICI in single-input-single-output (SISO) OFDM systems denoted per sub-block equalization (PSE) which operates on sub-blocks of the received OFDM symbol. Next we propose an extension of PSE to MIMO SF-OFDM systems. In particular, the Alamouti scheme is used in conjunction with PSE to combat ICI. Performance of the proposed scheme is evaluated for mobile digital video broadcasting DVB-T2 2 × 1 and 2 × 2 MIMO scenarios that suit with a possible extension to handheld devices in a next generation DVB-H. Numerical results show that the new receiver provides a gain from 21% to 33% with respect to the conventional OFDM receiver in terms of vehicular speed at which a target bit error rate can be maintained.\",\"PeriodicalId\":102244,\"journal\":{\"name\":\"2011 IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2011.5990418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2011.5990418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A frequency domain pre-equalizer for MIMO-OFDM mobile communication systems employing alamouti coding
Orthogonal frequency division multiplexing (OFDM) is a very popular modulation scheme because it requires a very simple receiver in transforming a frequency-selective channel into multiple flat-fading channels. Furthermore, multiple-input-multiple-output (MIMO) OFDM systems employing transmit diversity techniques, such as space-time (ST) and space-frequency (SF) coding, increase robustness and reliability over wireless fading channels. However, time-variation of the channel due to mobility disrupts orthogonality among subcarriers and yields intercarrier interference (ICI), limiting the performance of OFDM. In this paper we first recall a reduced-complexity technique to mitigate ICI in single-input-single-output (SISO) OFDM systems denoted per sub-block equalization (PSE) which operates on sub-blocks of the received OFDM symbol. Next we propose an extension of PSE to MIMO SF-OFDM systems. In particular, the Alamouti scheme is used in conjunction with PSE to combat ICI. Performance of the proposed scheme is evaluated for mobile digital video broadcasting DVB-T2 2 × 1 and 2 × 2 MIMO scenarios that suit with a possible extension to handheld devices in a next generation DVB-H. Numerical results show that the new receiver provides a gain from 21% to 33% with respect to the conventional OFDM receiver in terms of vehicular speed at which a target bit error rate can be maintained.