集成Redis和Spark的地理空间查询处理可视化框架

S. Vasavi, G. V.N.Priyanka, A. Gokhale
{"title":"集成Redis和Spark的地理空间查询处理可视化框架","authors":"S. Vasavi, G. V.N.Priyanka, A. Gokhale","doi":"10.4018/IJNCR.2019070101","DOIUrl":null,"url":null,"abstract":"Nowadays we are moving towards digitization and making all our devices produce a variety of data, this has paved the way to the emergence of NoSQL databases like Cassandra, MongoDB, and Redis. Big data such as geospatial data allows for geospatial analytics in applications such as tourism, marketing, and rural development. Spark frameworks provide operators storage and processing of distributed data. This article proposes “GeoRediSpark” to integrate Redis with Spark. Redis is a key-value store that uses an in-memory store, hence integrating Redis with Spark can extend the real-time processing of geospatial data. The article investigates storage and retrieval of the Redis built-in geospatial queries and has added two new geospatial operators, GeoWithin and GeoIntersect, to enhance the capabilities of Redis. Hashed indexing is used to improve the processing performance. A comparison on Redis metrics with three benchmark datasets is made. Hashset is used to display geographic data. The output of geospatial queries is visualized to the type of place and the nature of the query using Tableau.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Framework for Visualization of GeoSpatial Query Processing by Integrating Redis With Spark\",\"authors\":\"S. Vasavi, G. V.N.Priyanka, A. Gokhale\",\"doi\":\"10.4018/IJNCR.2019070101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays we are moving towards digitization and making all our devices produce a variety of data, this has paved the way to the emergence of NoSQL databases like Cassandra, MongoDB, and Redis. Big data such as geospatial data allows for geospatial analytics in applications such as tourism, marketing, and rural development. Spark frameworks provide operators storage and processing of distributed data. This article proposes “GeoRediSpark” to integrate Redis with Spark. Redis is a key-value store that uses an in-memory store, hence integrating Redis with Spark can extend the real-time processing of geospatial data. The article investigates storage and retrieval of the Redis built-in geospatial queries and has added two new geospatial operators, GeoWithin and GeoIntersect, to enhance the capabilities of Redis. Hashed indexing is used to improve the processing performance. A comparison on Redis metrics with three benchmark datasets is made. Hashset is used to display geographic data. The output of geospatial queries is visualized to the type of place and the nature of the query using Tableau.\",\"PeriodicalId\":369881,\"journal\":{\"name\":\"Int. J. Nat. Comput. Res.\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nat. Comput. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJNCR.2019070101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJNCR.2019070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

如今,我们正朝着数字化的方向发展,让我们所有的设备都能产生各种各样的数据,这为Cassandra、MongoDB和Redis等NoSQL数据库的出现铺平了道路。地理空间数据等大数据允许在旅游、营销和农村发展等应用中进行地理空间分析。Spark框架为操作员提供分布式数据的存储和处理。本文提出了“GeoRediSpark”来集成Redis和Spark。Redis是一个使用内存存储的键值存储,因此将Redis与Spark集成可以扩展地理空间数据的实时处理。本文研究了Redis内置地理空间查询的存储和检索,并增加了两个新的地理空间操作符,GeoWithin和GeoIntersect,以增强Redis的功能。散列索引用于提高处理性能。对Redis指标与三个基准数据集进行了比较。哈希集用于显示地理数据。使用Tableau将地理空间查询的输出可视化为地点类型和查询的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Framework for Visualization of GeoSpatial Query Processing by Integrating Redis With Spark
Nowadays we are moving towards digitization and making all our devices produce a variety of data, this has paved the way to the emergence of NoSQL databases like Cassandra, MongoDB, and Redis. Big data such as geospatial data allows for geospatial analytics in applications such as tourism, marketing, and rural development. Spark frameworks provide operators storage and processing of distributed data. This article proposes “GeoRediSpark” to integrate Redis with Spark. Redis is a key-value store that uses an in-memory store, hence integrating Redis with Spark can extend the real-time processing of geospatial data. The article investigates storage and retrieval of the Redis built-in geospatial queries and has added two new geospatial operators, GeoWithin and GeoIntersect, to enhance the capabilities of Redis. Hashed indexing is used to improve the processing performance. A comparison on Redis metrics with three benchmark datasets is made. Hashset is used to display geographic data. The output of geospatial queries is visualized to the type of place and the nature of the query using Tableau.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights Into Incorporating Trustworthiness and Ethics in AI Systems With Explainable AI Concept Drift Adaptation in Intrusion Detection Systems Using Ensemble Learning Natural Computing of Human Facial Emotion Using Multi-Learning Fuzzy Approach Detection of Small Oranges Using YOLO v3 Feature Pyramid Mechanism Performance Parameter Evaluation of 7nm FinFET by Tuning Metal Work Function and High K Dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1