{"title":"虚乘加性系统的一致性和复杂性","authors":"Ross Horne","doi":"10.7561/SACS.2015.2.245","DOIUrl":null,"url":null,"abstract":"This paper investigates the proof theory of multiplicative additive system virtual (MAV). MAV combines two established proof calculi: multiplicative additive linear logic (MALL) and basic system virtual (BV). Due to the presence of the self-dual non-commutative operator from BV, the calculus MAV is defined in the calculus of structures — a generalisation of the sequent calculus where inference rules can be applied in any context. A generalised cut elimination result is proven for MAV, thereby establishing the consistency of linear implication defined in the calculus. The cut elimination proof involves a termination measure based on multisets of multisets of natural numbers to handle subtle interactions between operators of BV and MAV. Proof search in MAV is proven to be a PSPACE-complete decision problem. The study of this calculus is motivated by observations about applications in computer science to the verification of protocols and to querying.","PeriodicalId":394919,"journal":{"name":"Sci. Ann. Comput. Sci.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"The Consistency and Complexity of Multiplicative Additive System Virtual\",\"authors\":\"Ross Horne\",\"doi\":\"10.7561/SACS.2015.2.245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the proof theory of multiplicative additive system virtual (MAV). MAV combines two established proof calculi: multiplicative additive linear logic (MALL) and basic system virtual (BV). Due to the presence of the self-dual non-commutative operator from BV, the calculus MAV is defined in the calculus of structures — a generalisation of the sequent calculus where inference rules can be applied in any context. A generalised cut elimination result is proven for MAV, thereby establishing the consistency of linear implication defined in the calculus. The cut elimination proof involves a termination measure based on multisets of multisets of natural numbers to handle subtle interactions between operators of BV and MAV. Proof search in MAV is proven to be a PSPACE-complete decision problem. The study of this calculus is motivated by observations about applications in computer science to the verification of protocols and to querying.\",\"PeriodicalId\":394919,\"journal\":{\"name\":\"Sci. Ann. Comput. Sci.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sci. Ann. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7561/SACS.2015.2.245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. Ann. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7561/SACS.2015.2.245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Consistency and Complexity of Multiplicative Additive System Virtual
This paper investigates the proof theory of multiplicative additive system virtual (MAV). MAV combines two established proof calculi: multiplicative additive linear logic (MALL) and basic system virtual (BV). Due to the presence of the self-dual non-commutative operator from BV, the calculus MAV is defined in the calculus of structures — a generalisation of the sequent calculus where inference rules can be applied in any context. A generalised cut elimination result is proven for MAV, thereby establishing the consistency of linear implication defined in the calculus. The cut elimination proof involves a termination measure based on multisets of multisets of natural numbers to handle subtle interactions between operators of BV and MAV. Proof search in MAV is proven to be a PSPACE-complete decision problem. The study of this calculus is motivated by observations about applications in computer science to the verification of protocols and to querying.