基于卷积神经网络的超宽带信道分类

Parnian A. ShirinAbadi, A. Abbasi
{"title":"基于卷积神经网络的超宽带信道分类","authors":"Parnian A. ShirinAbadi, A. Abbasi","doi":"10.1109/UEMCON47517.2019.8993100","DOIUrl":null,"url":null,"abstract":"In this paper, a novel convolutional neural network (CNN) algorithm for ultra-wideband (UWB) line-of-sight (LOS) and non-line-of-sight (NLOS) channel classification is proposed. Unlike the existing methods, which are based on machine learning algorithms and require suitable information/parameters for classification to be extracted for classification procedure, the proposed method uses deep learning approaches in which the model learns discriminating information for classification automatically by itself during the “training” phase. The performance of the proposed method is investigated in the IEEE 802.15.4a standard for UWB channels in indoor office LOS and NLOS environments.","PeriodicalId":187022,"journal":{"name":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"UWB Channel Classification Using Convolutional Neural Networks\",\"authors\":\"Parnian A. ShirinAbadi, A. Abbasi\",\"doi\":\"10.1109/UEMCON47517.2019.8993100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel convolutional neural network (CNN) algorithm for ultra-wideband (UWB) line-of-sight (LOS) and non-line-of-sight (NLOS) channel classification is proposed. Unlike the existing methods, which are based on machine learning algorithms and require suitable information/parameters for classification to be extracted for classification procedure, the proposed method uses deep learning approaches in which the model learns discriminating information for classification automatically by itself during the “training” phase. The performance of the proposed method is investigated in the IEEE 802.15.4a standard for UWB channels in indoor office LOS and NLOS environments.\",\"PeriodicalId\":187022,\"journal\":{\"name\":\"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON47517.2019.8993100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON47517.2019.8993100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种新的卷积神经网络(CNN)算法,用于超宽带(UWB)视距(LOS)和非视距(NLOS)信道分类。现有方法基于机器学习算法,需要提取合适的分类信息/参数进行分类,而本文提出的方法采用深度学习方法,模型在“训练”阶段自动学习分类的判别信息。在ieee802.15.a标准中对该方法在室内办公室LOS和NLOS环境下的UWB信道性能进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UWB Channel Classification Using Convolutional Neural Networks
In this paper, a novel convolutional neural network (CNN) algorithm for ultra-wideband (UWB) line-of-sight (LOS) and non-line-of-sight (NLOS) channel classification is proposed. Unlike the existing methods, which are based on machine learning algorithms and require suitable information/parameters for classification to be extracted for classification procedure, the proposed method uses deep learning approaches in which the model learns discriminating information for classification automatically by itself during the “training” phase. The performance of the proposed method is investigated in the IEEE 802.15.4a standard for UWB channels in indoor office LOS and NLOS environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning for DDoS Attack Classification Using Hive Plots Low Power Design for DVFS Capable Software ADREMOVER: THE IMPROVED MACHINE LEARNING APPROACH FOR BLOCKING ADS Overhead View Person Detection Using YOLO Multi-sensor Wearable for Child Safety
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1