构建肺结节解释的概率分类器集合

D. Zinovev, J. Furst, D. Raicu
{"title":"构建肺结节解释的概率分类器集合","authors":"D. Zinovev, J. Furst, D. Raicu","doi":"10.1109/ICMLA.2011.44","DOIUrl":null,"url":null,"abstract":"When examining Computed Tomography (CT) scans of lungs for potential abnormalities, radiologists make use of lung nodule's semantic characteristics during the analysis. Computer-Aided Diagnostic Characterization (CADc) systems can act as an aid - predicting ratings of these semantic characteristics to aid radiologists in evaluating the nodule and potentially improve the quality and consistency of diagnosis. In our work, we propose a system for predicting the distribution of radiologists' opinions using a probabilistic multi-class classification approach based on combination of belief decision trees and ADABoost ensemble learning approach. To train and test our system we use the National Cancer Institute (NCI) Lung Image Database Consortium (LIDC) dataset, which includes semantic annotations by up to four radiologists for each one of the 914 nodules. Furthermore, we evaluate our probabilistic multi-class classifications using a novel distance-threshold curve technique intended for assessing the performance of uncertain classification systems. We conclude that for the majority of semantic characteristics there exists a set of parameters that significantly improves the performance of the ensemble over the single classifier.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Building an Ensemble of Probabilistic Classifiers for Lung Nodule Interpretation\",\"authors\":\"D. Zinovev, J. Furst, D. Raicu\",\"doi\":\"10.1109/ICMLA.2011.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When examining Computed Tomography (CT) scans of lungs for potential abnormalities, radiologists make use of lung nodule's semantic characteristics during the analysis. Computer-Aided Diagnostic Characterization (CADc) systems can act as an aid - predicting ratings of these semantic characteristics to aid radiologists in evaluating the nodule and potentially improve the quality and consistency of diagnosis. In our work, we propose a system for predicting the distribution of radiologists' opinions using a probabilistic multi-class classification approach based on combination of belief decision trees and ADABoost ensemble learning approach. To train and test our system we use the National Cancer Institute (NCI) Lung Image Database Consortium (LIDC) dataset, which includes semantic annotations by up to four radiologists for each one of the 914 nodules. Furthermore, we evaluate our probabilistic multi-class classifications using a novel distance-threshold curve technique intended for assessing the performance of uncertain classification systems. We conclude that for the majority of semantic characteristics there exists a set of parameters that significantly improves the performance of the ensemble over the single classifier.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

当检查计算机断层扫描(CT)肺部的潜在异常时,放射科医生在分析过程中使用肺结节的语义特征。计算机辅助诊断表征(CADc)系统可以作为辅助预测这些语义特征的评级,以帮助放射科医生评估结节,并有可能提高诊断的质量和一致性。在我们的工作中,我们提出了一个基于信念决策树和ADABoost集成学习方法相结合的概率多类分类方法来预测放射科医生意见分布的系统。为了训练和测试我们的系统,我们使用了国家癌症研究所(NCI)肺图像数据库联盟(LIDC)数据集,其中包括多达四名放射科医生对914个结节中的每个结节的语义注释。此外,我们使用一种新的距离阈值曲线技术来评估我们的概率多类分类,该技术旨在评估不确定分类系统的性能。我们得出的结论是,对于大多数语义特征,存在一组参数,这些参数可以显着提高集成在单个分类器上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building an Ensemble of Probabilistic Classifiers for Lung Nodule Interpretation
When examining Computed Tomography (CT) scans of lungs for potential abnormalities, radiologists make use of lung nodule's semantic characteristics during the analysis. Computer-Aided Diagnostic Characterization (CADc) systems can act as an aid - predicting ratings of these semantic characteristics to aid radiologists in evaluating the nodule and potentially improve the quality and consistency of diagnosis. In our work, we propose a system for predicting the distribution of radiologists' opinions using a probabilistic multi-class classification approach based on combination of belief decision trees and ADABoost ensemble learning approach. To train and test our system we use the National Cancer Institute (NCI) Lung Image Database Consortium (LIDC) dataset, which includes semantic annotations by up to four radiologists for each one of the 914 nodules. Furthermore, we evaluate our probabilistic multi-class classifications using a novel distance-threshold curve technique intended for assessing the performance of uncertain classification systems. We conclude that for the majority of semantic characteristics there exists a set of parameters that significantly improves the performance of the ensemble over the single classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Mining Approach to Travel Price Forecasting L1 vs. L2 Regularization in Text Classification when Learning from Labeled Features Nonlinear RANSAC Optimization for Parameter Estimation with Applications to Phagocyte Transmigration Speech Rating System through Space Mapping Kernel Methods for Minimum Entropy Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1