Weichen Li, Patrick Abels, Zahra Ahmadi, Sophie Burkhardt, Benjamin Schiller, Iryna Gurevych, S. Kramer
{"title":"基于主题的知识图谱构建","authors":"Weichen Li, Patrick Abels, Zahra Ahmadi, Sophie Burkhardt, Benjamin Schiller, Iryna Gurevych, S. Kramer","doi":"10.1109/ICKG52313.2021.00049","DOIUrl":null,"url":null,"abstract":"Decision-making tasks usually follow five steps: identifying the problem, collecting data, extracting evidence, iden-tifying arguments, and making the decision. This paper focuses on two steps of decision-making: extracting evidence by building knowledge graphs (KGs) of specialized topics and identifying sentences' arguments through sentence-level argument mining. We present a hybrid model that combines topic modeling using latent Dirichlet allocation (LDA) and word embeddings to obtain external knowledge from structured and unstructured data. We use a topic model to extract topic- and sentence-specific evidence from the structured knowledge base Wikidata. A knowledge graph is constructed based on the cosine similarity between the entity word vectors of Wikidata and the vector of the given sentence. A second graph based on topic-specific articles found via Google supplements the general incompleteness of the structured knowledge base. Combining these graphs, we obtain a graph-based model that, as our evaluation shows, successfully capitalizes on both structured and unstructured data.","PeriodicalId":174126,"journal":{"name":"2021 IEEE International Conference on Big Knowledge (ICBK)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Topic-Guided Knowledge Graph Construction for Argument Mining\",\"authors\":\"Weichen Li, Patrick Abels, Zahra Ahmadi, Sophie Burkhardt, Benjamin Schiller, Iryna Gurevych, S. Kramer\",\"doi\":\"10.1109/ICKG52313.2021.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision-making tasks usually follow five steps: identifying the problem, collecting data, extracting evidence, iden-tifying arguments, and making the decision. This paper focuses on two steps of decision-making: extracting evidence by building knowledge graphs (KGs) of specialized topics and identifying sentences' arguments through sentence-level argument mining. We present a hybrid model that combines topic modeling using latent Dirichlet allocation (LDA) and word embeddings to obtain external knowledge from structured and unstructured data. We use a topic model to extract topic- and sentence-specific evidence from the structured knowledge base Wikidata. A knowledge graph is constructed based on the cosine similarity between the entity word vectors of Wikidata and the vector of the given sentence. A second graph based on topic-specific articles found via Google supplements the general incompleteness of the structured knowledge base. Combining these graphs, we obtain a graph-based model that, as our evaluation shows, successfully capitalizes on both structured and unstructured data.\",\"PeriodicalId\":174126,\"journal\":{\"name\":\"2021 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICKG52313.2021.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKG52313.2021.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topic-Guided Knowledge Graph Construction for Argument Mining
Decision-making tasks usually follow five steps: identifying the problem, collecting data, extracting evidence, iden-tifying arguments, and making the decision. This paper focuses on two steps of decision-making: extracting evidence by building knowledge graphs (KGs) of specialized topics and identifying sentences' arguments through sentence-level argument mining. We present a hybrid model that combines topic modeling using latent Dirichlet allocation (LDA) and word embeddings to obtain external knowledge from structured and unstructured data. We use a topic model to extract topic- and sentence-specific evidence from the structured knowledge base Wikidata. A knowledge graph is constructed based on the cosine similarity between the entity word vectors of Wikidata and the vector of the given sentence. A second graph based on topic-specific articles found via Google supplements the general incompleteness of the structured knowledge base. Combining these graphs, we obtain a graph-based model that, as our evaluation shows, successfully capitalizes on both structured and unstructured data.