{"title":"混合式学习课程中动态资源访问模式分析","authors":"Tobias Hecking, Sabrina Ziebarth, H. Hoppe","doi":"10.1145/2567574.2567584","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis of resource access patterns in a recently conducted master level university course. The specialty of the course was that it followed a new teaching approach by providing additional learning resources such as wikis, self-tests and videos. To gain deeper insights into the usage of the provided learning material we have built dynamic bipartite student -- resource networks based on event logs of resource access. These networks are analysed using methods adapted from social network analysis. In particular we uncover bipartite clusters of students and resources in those networks and propose a method to identify patterns and traces of their evolution over time.","PeriodicalId":178564,"journal":{"name":"Proceedings of the Fourth International Conference on Learning Analytics And Knowledge","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Analysis of dynamic resource access patterns in a blended learning course\",\"authors\":\"Tobias Hecking, Sabrina Ziebarth, H. Hoppe\",\"doi\":\"10.1145/2567574.2567584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an analysis of resource access patterns in a recently conducted master level university course. The specialty of the course was that it followed a new teaching approach by providing additional learning resources such as wikis, self-tests and videos. To gain deeper insights into the usage of the provided learning material we have built dynamic bipartite student -- resource networks based on event logs of resource access. These networks are analysed using methods adapted from social network analysis. In particular we uncover bipartite clusters of students and resources in those networks and propose a method to identify patterns and traces of their evolution over time.\",\"PeriodicalId\":178564,\"journal\":{\"name\":\"Proceedings of the Fourth International Conference on Learning Analytics And Knowledge\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth International Conference on Learning Analytics And Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2567574.2567584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Learning Analytics And Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2567574.2567584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of dynamic resource access patterns in a blended learning course
This paper presents an analysis of resource access patterns in a recently conducted master level university course. The specialty of the course was that it followed a new teaching approach by providing additional learning resources such as wikis, self-tests and videos. To gain deeper insights into the usage of the provided learning material we have built dynamic bipartite student -- resource networks based on event logs of resource access. These networks are analysed using methods adapted from social network analysis. In particular we uncover bipartite clusters of students and resources in those networks and propose a method to identify patterns and traces of their evolution over time.