蜂窝状多孔板对减压条件下临界热流密度的影响

F. Wu, S. Mori
{"title":"蜂窝状多孔板对减压条件下临界热流密度的影响","authors":"F. Wu, S. Mori","doi":"10.1115/icone29-88834","DOIUrl":null,"url":null,"abstract":"\n Enhancement of pool boiling heat transfer using a honeycomb porous plate (HPP) under atmosphere pressure has been experimentally examined. The previous research found that the critical heat flux (CHF) could be enhanced by up to three times above that of a plain surface. Considering the operating temperature in microelectronic devices, boiling at sub-atmospheric pressures for maintaining the lower surface temperature while removing high heat flux is required. Under circumstances of low pressure, there is a scarcity of research about boiling heat transfer for porous materials. Liquid supply is promoted by capillary action and vapor escape is facilitated by separating liquid flow channels from vapor flow channels in the HPP, and the CHF was expected to be improved even at reduced pressure conditions. Therefore, the CHF in saturated water boiling through an HPP at low pressure was studied in the current research. A more generalized understanding of the system pressure and the enhancement effect was provided, which made it possible to mitigate the enhancement technology bottlenecks through electronic devices and looked upon as further elaboration of the boiling heat transfer mechanism on honey-comb porous surfaces. There were three different pressures (51 kPa, 76 kPa and 100 kPa) investigated on the HPP; the results on the plain surface under the identical operating conditions were the same for each of the three pressures tested on the HPP.","PeriodicalId":302303,"journal":{"name":"Volume 15: Student Paper Competition","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of a Honey-Comb Porous Plate on the Critical Heat Flux Under Reduced Pressure Conditions\",\"authors\":\"F. Wu, S. Mori\",\"doi\":\"10.1115/icone29-88834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Enhancement of pool boiling heat transfer using a honeycomb porous plate (HPP) under atmosphere pressure has been experimentally examined. The previous research found that the critical heat flux (CHF) could be enhanced by up to three times above that of a plain surface. Considering the operating temperature in microelectronic devices, boiling at sub-atmospheric pressures for maintaining the lower surface temperature while removing high heat flux is required. Under circumstances of low pressure, there is a scarcity of research about boiling heat transfer for porous materials. Liquid supply is promoted by capillary action and vapor escape is facilitated by separating liquid flow channels from vapor flow channels in the HPP, and the CHF was expected to be improved even at reduced pressure conditions. Therefore, the CHF in saturated water boiling through an HPP at low pressure was studied in the current research. A more generalized understanding of the system pressure and the enhancement effect was provided, which made it possible to mitigate the enhancement technology bottlenecks through electronic devices and looked upon as further elaboration of the boiling heat transfer mechanism on honey-comb porous surfaces. There were three different pressures (51 kPa, 76 kPa and 100 kPa) investigated on the HPP; the results on the plain surface under the identical operating conditions were the same for each of the three pressures tested on the HPP.\",\"PeriodicalId\":302303,\"journal\":{\"name\":\"Volume 15: Student Paper Competition\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 15: Student Paper Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone29-88834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 15: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-88834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对常压下蜂窝多孔板强化池沸腾换热进行了实验研究。先前的研究发现,临界热通量(CHF)可以比平面表面提高三倍。考虑到微电子器件的工作温度,需要在亚大气压下沸腾以保持较低的表面温度,同时去除高热流密度。在低压条件下,多孔材料沸腾传热的研究较少。在HPP中,毛细管作用促进了液体的供应,通过分离液体流道和蒸汽流道促进了蒸汽的逸出,即使在减压条件下,CHF也有望得到改善。因此,本研究主要研究饱和水低压高压沸腾时的CHF。对系统压力和增强效应有了更广泛的认识,这使得通过电子设备缓解增强技术瓶颈成为可能,并被视为对蜂窝多孔表面沸腾传热机理的进一步阐述。对HPP进行了51 kPa、76 kPa和100 kPa三种不同压力的研究;在HPP上进行的三种压力测试中,在相同工况下,在平面上的结果是相同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of a Honey-Comb Porous Plate on the Critical Heat Flux Under Reduced Pressure Conditions
Enhancement of pool boiling heat transfer using a honeycomb porous plate (HPP) under atmosphere pressure has been experimentally examined. The previous research found that the critical heat flux (CHF) could be enhanced by up to three times above that of a plain surface. Considering the operating temperature in microelectronic devices, boiling at sub-atmospheric pressures for maintaining the lower surface temperature while removing high heat flux is required. Under circumstances of low pressure, there is a scarcity of research about boiling heat transfer for porous materials. Liquid supply is promoted by capillary action and vapor escape is facilitated by separating liquid flow channels from vapor flow channels in the HPP, and the CHF was expected to be improved even at reduced pressure conditions. Therefore, the CHF in saturated water boiling through an HPP at low pressure was studied in the current research. A more generalized understanding of the system pressure and the enhancement effect was provided, which made it possible to mitigate the enhancement technology bottlenecks through electronic devices and looked upon as further elaboration of the boiling heat transfer mechanism on honey-comb porous surfaces. There were three different pressures (51 kPa, 76 kPa and 100 kPa) investigated on the HPP; the results on the plain surface under the identical operating conditions were the same for each of the three pressures tested on the HPP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Generalization of Typical Data-Driven Fault Diagnosis Methods for Nuclear Power Plants Heat Transfer Characteristics of Different Horizontal Wires in Pools of Liquid and Supercritical Carbon Dioxide Specifics of Calculating Thermophysical Properties of CO2 and R134a in Critical Point Using NIST REFPROP Radiation Shielding Towards Commonly Available Objects Preliminary Core Calculation on Reactivity Compensation for SiC Matrix Fuel Compact HTTR With Erbium Burnable Poison and Plutonium Fissile Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1