实时行人检测使用鲁棒增强YOLOv3+

Chintakindi Balaram Murthy, Mohammad Farukh Hashmi
{"title":"实时行人检测使用鲁棒增强YOLOv3+","authors":"Chintakindi Balaram Murthy, Mohammad Farukh Hashmi","doi":"10.1109/ACIT50332.2020.9300053","DOIUrl":null,"url":null,"abstract":"Autonomous pedestrian detection plays a vital role in Computer Vision tasks such as smart video surveillance, smart traffic monitoring system and smart obstacle detections for building smart cities. Real-time performance is much required in self-driving cars particularly while detecting smaller pedestrians without losing any detection accuracy. The proposed paper introduces an anti-residual module in the robust Enhanced YOLOv3+ network to improve feature extraction. The proposed network is optimized by reducing bounding box loss error. This network is trained on Pascal VOC-2007+ 12 dataset, only on the extracted pedestrian images. Experimental results show this network achieves 79.86% detection accuracy while detecting smaller pedestrians and still meets the real-time requirements.","PeriodicalId":193891,"journal":{"name":"2020 21st International Arab Conference on Information Technology (ACIT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Real Time Pedestrian Detection Using Robust Enhanced YOLOv3+\",\"authors\":\"Chintakindi Balaram Murthy, Mohammad Farukh Hashmi\",\"doi\":\"10.1109/ACIT50332.2020.9300053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous pedestrian detection plays a vital role in Computer Vision tasks such as smart video surveillance, smart traffic monitoring system and smart obstacle detections for building smart cities. Real-time performance is much required in self-driving cars particularly while detecting smaller pedestrians without losing any detection accuracy. The proposed paper introduces an anti-residual module in the robust Enhanced YOLOv3+ network to improve feature extraction. The proposed network is optimized by reducing bounding box loss error. This network is trained on Pascal VOC-2007+ 12 dataset, only on the extracted pedestrian images. Experimental results show this network achieves 79.86% detection accuracy while detecting smaller pedestrians and still meets the real-time requirements.\",\"PeriodicalId\":193891,\"journal\":{\"name\":\"2020 21st International Arab Conference on Information Technology (ACIT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 21st International Arab Conference on Information Technology (ACIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIT50332.2020.9300053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT50332.2020.9300053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

自动行人检测在智能视频监控、智能交通监控系统和智能障碍物检测等计算机视觉任务中发挥着至关重要的作用。自动驾驶汽车非常需要实时性能,特别是在检测较小的行人时,同时又不损失任何检测精度。本文在鲁棒增强YOLOv3+网络中引入了一个抗残差模块,以改进特征提取。通过减小边界盒损失误差对网络进行了优化。该网络在Pascal VOC-2007+ 12数据集上进行训练,仅在提取的行人图像上进行训练。实验结果表明,该网络在检测较小行人的情况下,检测准确率达到79.86%,仍能满足实时性要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real Time Pedestrian Detection Using Robust Enhanced YOLOv3+
Autonomous pedestrian detection plays a vital role in Computer Vision tasks such as smart video surveillance, smart traffic monitoring system and smart obstacle detections for building smart cities. Real-time performance is much required in self-driving cars particularly while detecting smaller pedestrians without losing any detection accuracy. The proposed paper introduces an anti-residual module in the robust Enhanced YOLOv3+ network to improve feature extraction. The proposed network is optimized by reducing bounding box loss error. This network is trained on Pascal VOC-2007+ 12 dataset, only on the extracted pedestrian images. Experimental results show this network achieves 79.86% detection accuracy while detecting smaller pedestrians and still meets the real-time requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wireless Sensor Network MAC Energy - efficiency Protocols: A Survey Keystroke Identifier Using Fuzzy Logic to Increase Password Security A seq2seq Neural Network based Conversational Agent for Gulf Arabic Dialect Machine Learning and Soft Robotics Studying and Analyzing the Fog-based Internet of Robotic Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1