利用3D图像检测手心方向和手部形状,用于手语手势识别

L. K. Phadtare, R. Kushalnagar, N. Cahill
{"title":"利用3D图像检测手心方向和手部形状,用于手语手势识别","authors":"L. K. Phadtare, R. Kushalnagar, N. Cahill","doi":"10.1109/WNYIPW.2012.6466652","DOIUrl":null,"url":null,"abstract":"Automatic gesture recognition, specifically for the purpose of understanding sign language, can be an important aid in communicating with the deaf and hard-of-hearing. Recognition of sign languages requires understanding of various linguistic components such as palm orientation, hand shape, hand location and facial expression. We propose a method and system to estimate the palm orientation and the hand shape of a signer. Our system uses Microsoft Kinect to capture color and the depth images of a signer. It analyzes the depth data corresponding to the hand point region and fits plane to this data and defines the normal to this plane as the orientation of the palm. Then it uses 3-D shape context to determine the hand shape by comparing it to example shapes in the database. Palm orientation of the hand was found to be correct in varying poses. The shape context method for hand shape classification was found to identify 20 test hand shapes correctly and 10 shapes were matched to other but very similar shapes.","PeriodicalId":218110,"journal":{"name":"2012 Western New York Image Processing Workshop","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Detecting hand-palm orientation and hand shapes for sign language gesture recognition using 3D images\",\"authors\":\"L. K. Phadtare, R. Kushalnagar, N. Cahill\",\"doi\":\"10.1109/WNYIPW.2012.6466652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic gesture recognition, specifically for the purpose of understanding sign language, can be an important aid in communicating with the deaf and hard-of-hearing. Recognition of sign languages requires understanding of various linguistic components such as palm orientation, hand shape, hand location and facial expression. We propose a method and system to estimate the palm orientation and the hand shape of a signer. Our system uses Microsoft Kinect to capture color and the depth images of a signer. It analyzes the depth data corresponding to the hand point region and fits plane to this data and defines the normal to this plane as the orientation of the palm. Then it uses 3-D shape context to determine the hand shape by comparing it to example shapes in the database. Palm orientation of the hand was found to be correct in varying poses. The shape context method for hand shape classification was found to identify 20 test hand shapes correctly and 10 shapes were matched to other but very similar shapes.\",\"PeriodicalId\":218110,\"journal\":{\"name\":\"2012 Western New York Image Processing Workshop\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Western New York Image Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WNYIPW.2012.6466652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Western New York Image Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYIPW.2012.6466652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

自动手势识别,特别是为了理解手语的目的,可以成为与聋哑人和听力障碍者交流的重要辅助。识别手语需要理解各种语言成分,如手掌方向、手的形状、手的位置和面部表情。我们提出了一种方法和系统来估计一个人的手掌方向和手的形状。我们的系统使用微软Kinect来捕捉签名者的颜色和深度图像。分析手点区域对应的深度数据,对该数据进行平面拟合,并定义该平面的法线作为手掌的方向。然后,它使用3-D形状上下文通过将其与数据库中的示例形状进行比较来确定手的形状。研究发现,在不同的姿势下,手掌的方向是正确的。研究发现,形状上下文法可以正确识别20个测试手形,其中10个形状与其他非常相似的形状相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting hand-palm orientation and hand shapes for sign language gesture recognition using 3D images
Automatic gesture recognition, specifically for the purpose of understanding sign language, can be an important aid in communicating with the deaf and hard-of-hearing. Recognition of sign languages requires understanding of various linguistic components such as palm orientation, hand shape, hand location and facial expression. We propose a method and system to estimate the palm orientation and the hand shape of a signer. Our system uses Microsoft Kinect to capture color and the depth images of a signer. It analyzes the depth data corresponding to the hand point region and fits plane to this data and defines the normal to this plane as the orientation of the palm. Then it uses 3-D shape context to determine the hand shape by comparing it to example shapes in the database. Palm orientation of the hand was found to be correct in varying poses. The shape context method for hand shape classification was found to identify 20 test hand shapes correctly and 10 shapes were matched to other but very similar shapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sphere2: Jerry's rig, an OpenGL application for non-linear panorama viewing and interaction Lightweight, low-cost, side-mounted mobile eye tracking system A multi-channel approach for segmentation of solar corona in images from the solar dynamics observatory Detecting hand-palm orientation and hand shapes for sign language gesture recognition using 3D images Efficient SMQT features for snow-based classification on face detection and character recognition tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1