{"title":"病毒式营销2.0","authors":"L. Lakshmanan","doi":"10.1145/2980523.2980526","DOIUrl":null,"url":null,"abstract":"Over the last decade, there has been considerable excitement and research on the study and exploitation of the spread of information and influence over networks. Tremendous advances have been made on the prototypical problem of selecting a small number of seed users to activate over a social network such that the number of activated nodes in an expected sense is maximized, under several standard information diffusion models. Scalable heuristics, but more notably scalable approximation algorithms, have been developed in the recent years. Unfortunately, the state of the art has several shortcomings. Firstly, most of the research has focused on a simplistic setting where one marketing campaign is active at a time. While there has been some work on modeling and optimizing for competing diffusions, the key role played by the network owner in a campaign has been overlooked. Secondly, the relationship and contract needed between the network owner and the advertisers is not captured. Thirdly, in real life, relationships between multiple campaigns may be more complex than just pure competition. Finally, most of the studies assume that the seeds must be chosen all at once before the campaign starts with no opportunity to observe the performance of seeds chosen earlier and course-correct as needed. We make a call to arms for opening up the framework of viral marketing to allow for more expressive business models and seed selection strategies, and present some recent research from our group that addresses the modeling and computational challenges.","PeriodicalId":246127,"journal":{"name":"Proceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viral marketing 2.0\",\"authors\":\"L. Lakshmanan\",\"doi\":\"10.1145/2980523.2980526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last decade, there has been considerable excitement and research on the study and exploitation of the spread of information and influence over networks. Tremendous advances have been made on the prototypical problem of selecting a small number of seed users to activate over a social network such that the number of activated nodes in an expected sense is maximized, under several standard information diffusion models. Scalable heuristics, but more notably scalable approximation algorithms, have been developed in the recent years. Unfortunately, the state of the art has several shortcomings. Firstly, most of the research has focused on a simplistic setting where one marketing campaign is active at a time. While there has been some work on modeling and optimizing for competing diffusions, the key role played by the network owner in a campaign has been overlooked. Secondly, the relationship and contract needed between the network owner and the advertisers is not captured. Thirdly, in real life, relationships between multiple campaigns may be more complex than just pure competition. Finally, most of the studies assume that the seeds must be chosen all at once before the campaign starts with no opportunity to observe the performance of seeds chosen earlier and course-correct as needed. We make a call to arms for opening up the framework of viral marketing to allow for more expressive business models and seed selection strategies, and present some recent research from our group that addresses the modeling and computational challenges.\",\"PeriodicalId\":246127,\"journal\":{\"name\":\"Proceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2980523.2980526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2980523.2980526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年里,人们对信息传播和网络影响的研究和利用产生了相当大的兴趣和研究。在几种标准的信息扩散模型下,在选择少量种子用户激活社交网络的原型问题上取得了巨大的进展,从而使预期意义上的激活节点数量最大化。可伸缩启发式算法,尤其是可伸缩近似算法,是近年来发展起来的。不幸的是,目前的技术有几个缺点。首先,大多数研究都集中在一个简单的设定上,即一次只进行一项营销活动。虽然有一些关于竞争扩散的建模和优化工作,但网络所有者在活动中发挥的关键作用被忽视了。其次,网络所有者和广告商之间所需的关系和合同没有被捕获。第三,在现实生活中,多个活动之间的关系可能比单纯的竞争更为复杂。最后,大多数研究都假定种子必须在运动开始前一次全部选择,没有机会观察早期选择的种子的表现,并根据需要纠正路线。我们呼吁开放病毒式营销的框架,以允许更具表现力的商业模式和种子选择策略,并介绍了我们小组最近的一些研究,这些研究解决了建模和计算方面的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Viral marketing 2.0
Over the last decade, there has been considerable excitement and research on the study and exploitation of the spread of information and influence over networks. Tremendous advances have been made on the prototypical problem of selecting a small number of seed users to activate over a social network such that the number of activated nodes in an expected sense is maximized, under several standard information diffusion models. Scalable heuristics, but more notably scalable approximation algorithms, have been developed in the recent years. Unfortunately, the state of the art has several shortcomings. Firstly, most of the research has focused on a simplistic setting where one marketing campaign is active at a time. While there has been some work on modeling and optimizing for competing diffusions, the key role played by the network owner in a campaign has been overlooked. Secondly, the relationship and contract needed between the network owner and the advertisers is not captured. Thirdly, in real life, relationships between multiple campaigns may be more complex than just pure competition. Finally, most of the studies assume that the seeds must be chosen all at once before the campaign starts with no opportunity to observe the performance of seeds chosen earlier and course-correct as needed. We make a call to arms for opening up the framework of viral marketing to allow for more expressive business models and seed selection strategies, and present some recent research from our group that addresses the modeling and computational challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics Beyond nodes and edges: multiresolution algorithms for network data Viral marketing 2.0 NScaleSpark: subgraph-centric graph analytics on Apache Spark Analyzing extended property graphs with Apache Flink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1