博弈树搜索算法在FPGA上的实现:比较研究

Pranav Gangwar, Satvik Maurya, N. Pandey
{"title":"博弈树搜索算法在FPGA上的实现:比较研究","authors":"Pranav Gangwar, Satvik Maurya, N. Pandey","doi":"10.1109/ICICT46931.2019.8977671","DOIUrl":null,"url":null,"abstract":"This paper deals with realization of search algorithms used in the game solvers on the FPGA. Three algorithms namely Minimax, Alpha-Beta Pruning, and NegaScout are realized and compared amongst each other, and also with their software realization for the sake of completion. Results show that the FPGA based implementations are exceptionally faster than their software counterparts, with the NegaScout algorithm outperforming the conventionally used Alpha-Beta Pruning, and the Minimax algorithm, both in software and hardware. The NegaScout algorithm is 1.3 times faster than the Alpha-Beta Pruning algorithm and 2.6 times faster than the Minimax algorithm on hardware, while incurring a nominal cost in terms of FPGA resource utilization.","PeriodicalId":412668,"journal":{"name":"2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Realization of Game Tree Search Algorithms on FPGA: A Comparative Study\",\"authors\":\"Pranav Gangwar, Satvik Maurya, N. Pandey\",\"doi\":\"10.1109/ICICT46931.2019.8977671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with realization of search algorithms used in the game solvers on the FPGA. Three algorithms namely Minimax, Alpha-Beta Pruning, and NegaScout are realized and compared amongst each other, and also with their software realization for the sake of completion. Results show that the FPGA based implementations are exceptionally faster than their software counterparts, with the NegaScout algorithm outperforming the conventionally used Alpha-Beta Pruning, and the Minimax algorithm, both in software and hardware. The NegaScout algorithm is 1.3 times faster than the Alpha-Beta Pruning algorithm and 2.6 times faster than the Minimax algorithm on hardware, while incurring a nominal cost in terms of FPGA resource utilization.\",\"PeriodicalId\":412668,\"journal\":{\"name\":\"2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT46931.2019.8977671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT46931.2019.8977671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了游戏求解器中搜索算法在FPGA上的实现。本文实现了Minimax、Alpha-Beta Pruning和NegaScout三种算法,并对它们进行了比较,并与它们的软件实现进行了比较。结果表明,基于FPGA的实现比软件的实现要快得多,NegaScout算法在软件和硬件上都优于传统使用的Alpha-Beta修剪和Minimax算法。在硬件上,NegaScout算法比Alpha-Beta Pruning算法快1.3倍,比Minimax算法快2.6倍,同时在FPGA资源利用率方面产生了名义成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Realization of Game Tree Search Algorithms on FPGA: A Comparative Study
This paper deals with realization of search algorithms used in the game solvers on the FPGA. Three algorithms namely Minimax, Alpha-Beta Pruning, and NegaScout are realized and compared amongst each other, and also with their software realization for the sake of completion. Results show that the FPGA based implementations are exceptionally faster than their software counterparts, with the NegaScout algorithm outperforming the conventionally used Alpha-Beta Pruning, and the Minimax algorithm, both in software and hardware. The NegaScout algorithm is 1.3 times faster than the Alpha-Beta Pruning algorithm and 2.6 times faster than the Minimax algorithm on hardware, while incurring a nominal cost in terms of FPGA resource utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fraud Detection During Money Transaction and Prevention Stockwell Transform Based Algorithm for Processing of Digital Communication Signals to Detect Superimposed Noise Disturbances Exploration of Deep Learning Techniques in Big Data Analytics Acquiring and Analyzing Movement Detection through Image Granulation Handling Structured Data Using Data Mining Clustering Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1