协同社会标签探索的推荐系统

M. Parvathy, R. Ramya, K. Sundarakantham, S. Shalinie
{"title":"协同社会标签探索的推荐系统","authors":"M. Parvathy, R. Ramya, K. Sundarakantham, S. Shalinie","doi":"10.1109/ICRTIT.2014.6996160","DOIUrl":null,"url":null,"abstract":"Recommender system plays a significant role in reducing the information overload on the sites where users have searched and contented. Existing approaches which deals with such recommendation system apply collaborative filtering techniques to specify the most alike users whom they hope to make recommendations. Collaborative Filtering will significantly show better improvement with the enclosure of real data extraction from the suitable tagging system. In this paper, data from social tagging systems are extracted for every individual considering the correlations between users, items, and tag information. Tag information from users is the most decisive factor to predict the personalized suggestion for web users. Here, we rank the available content based tag information with the inclusion of temporal decay of users' behavior over time and the centrality of every node in the network. Finally, we use the common preference metric for effective personalization. Results have been experimentally demonstrated with the empirical dataset MovieLens and provided the results as an alternative recommendation method with simplicity and efficiency.","PeriodicalId":422275,"journal":{"name":"2014 International Conference on Recent Trends in Information Technology","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recommendation system with collaborative social tagging exploration\",\"authors\":\"M. Parvathy, R. Ramya, K. Sundarakantham, S. Shalinie\",\"doi\":\"10.1109/ICRTIT.2014.6996160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender system plays a significant role in reducing the information overload on the sites where users have searched and contented. Existing approaches which deals with such recommendation system apply collaborative filtering techniques to specify the most alike users whom they hope to make recommendations. Collaborative Filtering will significantly show better improvement with the enclosure of real data extraction from the suitable tagging system. In this paper, data from social tagging systems are extracted for every individual considering the correlations between users, items, and tag information. Tag information from users is the most decisive factor to predict the personalized suggestion for web users. Here, we rank the available content based tag information with the inclusion of temporal decay of users' behavior over time and the centrality of every node in the network. Finally, we use the common preference metric for effective personalization. Results have been experimentally demonstrated with the empirical dataset MovieLens and provided the results as an alternative recommendation method with simplicity and efficiency.\",\"PeriodicalId\":422275,\"journal\":{\"name\":\"2014 International Conference on Recent Trends in Information Technology\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Recent Trends in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRTIT.2014.6996160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Recent Trends in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2014.6996160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

推荐系统在减少用户搜索和满足的网站信息过载方面起着重要的作用。现有的推荐方法采用协同过滤技术来指定最相似的用户进行推荐。当从合适的标注系统中抽取真实数据时,协同过滤会有明显的改善。在本文中,考虑到用户、项目和标签信息之间的相关性,从社会标签系统中提取每个个体的数据。用户标签信息是预测网络用户个性化建议的最决定性因素。在这里,我们对可用的基于标签信息的内容进行排名,包括用户行为随时间的时间衰减和网络中每个节点的中心性。最后,我们使用通用偏好度量来实现有效的个性化。利用经验数据集MovieLens对结果进行了实验验证,并提供了一种简单高效的替代推荐方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recommendation system with collaborative social tagging exploration
Recommender system plays a significant role in reducing the information overload on the sites where users have searched and contented. Existing approaches which deals with such recommendation system apply collaborative filtering techniques to specify the most alike users whom they hope to make recommendations. Collaborative Filtering will significantly show better improvement with the enclosure of real data extraction from the suitable tagging system. In this paper, data from social tagging systems are extracted for every individual considering the correlations between users, items, and tag information. Tag information from users is the most decisive factor to predict the personalized suggestion for web users. Here, we rank the available content based tag information with the inclusion of temporal decay of users' behavior over time and the centrality of every node in the network. Finally, we use the common preference metric for effective personalization. Results have been experimentally demonstrated with the empirical dataset MovieLens and provided the results as an alternative recommendation method with simplicity and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DigiCloud: Scrutinizing apt service for coping with confidential control over utility practice Effect of multi-word features on the hierarchical clustering of web documents Efficient fingerprint lookup using Prefix Indexing Tablet An image encryption using chaotic permutation and diffusion Efficient design of different forms of FIR filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1