农作物产量预测数据挖掘技术的比较分析

Utsha Das, Hasan Sanjary Islam, Kakon Paul Avi, Ajmayeen Adil, Dipannyta Nandi
{"title":"农作物产量预测数据挖掘技术的比较分析","authors":"Utsha Das, Hasan Sanjary Islam, Kakon Paul Avi, Ajmayeen Adil, Dipannyta Nandi","doi":"10.5815/ijitcs.2023.04.03","DOIUrl":null,"url":null,"abstract":"Predicting crop yields is one of the more difficult tasks in the agriculture sector. A fascinating area of research to estimate agricultural productivity has emerged from recent advancements in information technology for agriculture. Crop yield prediction is a technique for estimating crop production based on a variety of factors, including weather conditions and parameters such as temperature, rainfall, fertilizer, and pesticide use. In the world of agriculture, Data mining techniques are extremely popular. In order to predict the crop production for the following year, data mining techniques are employed and evaluated in the agricultural sector. In this paper, we carried out the comparison between Naive Bayes, K-nearest neighbor, Decision Tree, Random Forest, and K-Means clustering algorithms to predict crop yield in order to determine which method is most effective at doing so. The results show which algorithm is better suitable for this particular purpose by comparing these data mining algorithms for agricultural crop production and determining which algorithm is more successful for this outcome.","PeriodicalId":130361,"journal":{"name":"International Journal of Information Technology and Computer Science","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Data Mining Techniques for Predicting the Yield of Agricultural Crops\",\"authors\":\"Utsha Das, Hasan Sanjary Islam, Kakon Paul Avi, Ajmayeen Adil, Dipannyta Nandi\",\"doi\":\"10.5815/ijitcs.2023.04.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting crop yields is one of the more difficult tasks in the agriculture sector. A fascinating area of research to estimate agricultural productivity has emerged from recent advancements in information technology for agriculture. Crop yield prediction is a technique for estimating crop production based on a variety of factors, including weather conditions and parameters such as temperature, rainfall, fertilizer, and pesticide use. In the world of agriculture, Data mining techniques are extremely popular. In order to predict the crop production for the following year, data mining techniques are employed and evaluated in the agricultural sector. In this paper, we carried out the comparison between Naive Bayes, K-nearest neighbor, Decision Tree, Random Forest, and K-Means clustering algorithms to predict crop yield in order to determine which method is most effective at doing so. The results show which algorithm is better suitable for this particular purpose by comparing these data mining algorithms for agricultural crop production and determining which algorithm is more successful for this outcome.\",\"PeriodicalId\":130361,\"journal\":{\"name\":\"International Journal of Information Technology and Computer Science\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijitcs.2023.04.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijitcs.2023.04.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测作物产量是农业部门比较困难的任务之一。最近农业信息技术的进步,催生了一个估算农业生产率的引人入胜的研究领域。作物产量预测是一种基于多种因素估计作物产量的技术,包括天气条件和温度、降雨、肥料和农药使用等参数。在农业领域,数据挖掘技术非常流行。为了预测下一年的作物产量,数据挖掘技术被用于农业部门并进行评估。在本文中,我们对朴素贝叶斯、k近邻、决策树、随机森林和k均值聚类算法进行了比较,以确定哪种方法在预测作物产量方面最有效。通过比较这些用于农业作物生产的数据挖掘算法,并确定哪种算法更成功,结果表明哪种算法更适合这一特定目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Analysis of Data Mining Techniques for Predicting the Yield of Agricultural Crops
Predicting crop yields is one of the more difficult tasks in the agriculture sector. A fascinating area of research to estimate agricultural productivity has emerged from recent advancements in information technology for agriculture. Crop yield prediction is a technique for estimating crop production based on a variety of factors, including weather conditions and parameters such as temperature, rainfall, fertilizer, and pesticide use. In the world of agriculture, Data mining techniques are extremely popular. In order to predict the crop production for the following year, data mining techniques are employed and evaluated in the agricultural sector. In this paper, we carried out the comparison between Naive Bayes, K-nearest neighbor, Decision Tree, Random Forest, and K-Means clustering algorithms to predict crop yield in order to determine which method is most effective at doing so. The results show which algorithm is better suitable for this particular purpose by comparing these data mining algorithms for agricultural crop production and determining which algorithm is more successful for this outcome.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Healthcare Provision in Conflict Zones: Queuing System Models for Mobile and Flexible Medical Care Units with a Limited Number of Treatment Stations A Machine Learning Based Intelligent Diabetic and Hypertensive Patient Prediction Scheme and A Mobile Application for Patients Assistance Mimicking Nature: Analysis of Dragonfly Pursuit Strategies Using LSTM and Kalman Filter Securing the Internet of Things: Evaluating Machine Learning Algorithms for Detecting IoT Cyberattacks Using CIC-IoT2023 Dataset Analyzing Test Performance of BSIT Students and Question Quality: A Study on Item Difficulty Index and Item Discrimination Index for Test Question Improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1