基于单光子发射计算机断层扫描的全身骨扫描计算机辅助诊断系统

Sheng-Fang Huang, H. Chao, Cheng-Chin Hsu, Shan-Fong Yang, P. Kao
{"title":"基于单光子发射计算机断层扫描的全身骨扫描计算机辅助诊断系统","authors":"Sheng-Fang Huang, H. Chao, Cheng-Chin Hsu, Shan-Fong Yang, P. Kao","doi":"10.1109/ISBI.2009.5193104","DOIUrl":null,"url":null,"abstract":"Tc-99m MDP whole body bone scan using single photon emission computed tomography (SPECT) is an important and general method to investigate the spreading of malignant tumors. However, it is time-consuming for doctors to perform three-dimensional (3D) assessment using SPECT images. Therefore, a computer-aided diagnosis (CAD) system is required to identify suspicious locations of bone abnormalities. In this study, we developed a 3D-based segmentation method and a quantitative scheme to detect the findings of possible abnormalities. In this method, we designed a new data structure called bone graph that characterizes scanned images as graph, where by tracking this graph, we can extract the morphological features from the entire skeleton. The proposed scheme automatically extracts the skeletal structure of human spine, and can be adopted to assist nuclear medicine physicians to identify the potential locations of bone lesions.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A computer-aided diagnosis system for whole body bone scan using single photon emission computed tomography\",\"authors\":\"Sheng-Fang Huang, H. Chao, Cheng-Chin Hsu, Shan-Fong Yang, P. Kao\",\"doi\":\"10.1109/ISBI.2009.5193104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tc-99m MDP whole body bone scan using single photon emission computed tomography (SPECT) is an important and general method to investigate the spreading of malignant tumors. However, it is time-consuming for doctors to perform three-dimensional (3D) assessment using SPECT images. Therefore, a computer-aided diagnosis (CAD) system is required to identify suspicious locations of bone abnormalities. In this study, we developed a 3D-based segmentation method and a quantitative scheme to detect the findings of possible abnormalities. In this method, we designed a new data structure called bone graph that characterizes scanned images as graph, where by tracking this graph, we can extract the morphological features from the entire skeleton. The proposed scheme automatically extracts the skeletal structure of human spine, and can be adopted to assist nuclear medicine physicians to identify the potential locations of bone lesions.\",\"PeriodicalId\":272938,\"journal\":{\"name\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2009.5193104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

tc - 99mmdp全身骨扫描采用单光子发射计算机断层扫描(SPECT)是研究恶性肿瘤扩散的重要而通用的方法。然而,医生使用SPECT图像进行三维(3D)评估非常耗时。因此,需要计算机辅助诊断(CAD)系统来识别骨骼异常的可疑位置。在这项研究中,我们开发了一种基于3d的分割方法和定量方案来检测可能的异常发现。在这种方法中,我们设计了一种新的数据结构,称为骨图,它将扫描图像表征为图形,通过跟踪该图形,我们可以从整个骨骼中提取形态学特征。该方案可自动提取人体脊柱的骨骼结构,并可用于协助核医学医生识别骨骼病变的潜在位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A computer-aided diagnosis system for whole body bone scan using single photon emission computed tomography
Tc-99m MDP whole body bone scan using single photon emission computed tomography (SPECT) is an important and general method to investigate the spreading of malignant tumors. However, it is time-consuming for doctors to perform three-dimensional (3D) assessment using SPECT images. Therefore, a computer-aided diagnosis (CAD) system is required to identify suspicious locations of bone abnormalities. In this study, we developed a 3D-based segmentation method and a quantitative scheme to detect the findings of possible abnormalities. In this method, we designed a new data structure called bone graph that characterizes scanned images as graph, where by tracking this graph, we can extract the morphological features from the entire skeleton. The proposed scheme automatically extracts the skeletal structure of human spine, and can be adopted to assist nuclear medicine physicians to identify the potential locations of bone lesions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic alignment of stacks of filament data Analysis of nerve activity and optical signals from mouse brain stem to identify cells generating respiratory rhythms Segmentation and classification of triple negative breast cancers using DCE-MRI Improved registration for large electron microscopy images Special purpose 3-D reconstruction and restoration algorithms for electron microscopy of nanoscale objects and an enabling software toolkit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1