功能磁共振多主体贝叶斯联合检测与估计

S. Badillo, S. Desmidt, Chantal Ginisty, P. Ciuciu
{"title":"功能磁共振多主体贝叶斯联合检测与估计","authors":"S. Badillo, S. Desmidt, Chantal Ginisty, P. Ciuciu","doi":"10.1109/PRNI.2014.6858508","DOIUrl":null,"url":null,"abstract":"Modern cognitive experiments in functional Magnetic Resonance Imaging (fMRI) rely on a cohort of subjects sampled from a population of interest to study characteristics of the healthy brain or to identify biomarkers on a specific pathology (e.g., Alzheimer's disease) or disorder (e.g., ageing). Group-level studies usually proceed in two steps by making random-effect analysis on top of intra-subject analyses, to localize activated regions in response to stimulations or to estimate brain dynamics. Here, we focus on improving the accuracy of group-level inference of the hemodynamic response function (HRF). We rest on a existing Joint Detection-Estimation (JDE) framework which aims at detecting evoked activity and estimating HRF shapes jointly. So far, region-specific group-level HRFs have been captured by averaging intra-subject HRF profiles. Here, our approach extends the JDE formalism to the multi-subject context by proposing a hierarchical Bayesian modeling that includes an additional layer for describing the link between subject-specific and group-level HRFs. This extension outperforms the original approach both on artificial and real multi-subject datasets.","PeriodicalId":133286,"journal":{"name":"2014 International Workshop on Pattern Recognition in Neuroimaging","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multi-subject Bayesian Joint Detection and Estimation in fMRI\",\"authors\":\"S. Badillo, S. Desmidt, Chantal Ginisty, P. Ciuciu\",\"doi\":\"10.1109/PRNI.2014.6858508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern cognitive experiments in functional Magnetic Resonance Imaging (fMRI) rely on a cohort of subjects sampled from a population of interest to study characteristics of the healthy brain or to identify biomarkers on a specific pathology (e.g., Alzheimer's disease) or disorder (e.g., ageing). Group-level studies usually proceed in two steps by making random-effect analysis on top of intra-subject analyses, to localize activated regions in response to stimulations or to estimate brain dynamics. Here, we focus on improving the accuracy of group-level inference of the hemodynamic response function (HRF). We rest on a existing Joint Detection-Estimation (JDE) framework which aims at detecting evoked activity and estimating HRF shapes jointly. So far, region-specific group-level HRFs have been captured by averaging intra-subject HRF profiles. Here, our approach extends the JDE formalism to the multi-subject context by proposing a hierarchical Bayesian modeling that includes an additional layer for describing the link between subject-specific and group-level HRFs. This extension outperforms the original approach both on artificial and real multi-subject datasets.\",\"PeriodicalId\":133286,\"journal\":{\"name\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2014.6858508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2014.6858508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

功能磁共振成像(fMRI)中的现代认知实验依赖于从感兴趣的人群中抽样的一组受试者来研究健康大脑的特征或识别特定病理(例如阿尔茨海默病)或疾病(例如衰老)的生物标志物。群体水平的研究通常分两步进行,在受试者内部分析的基础上进行随机效应分析,定位刺激反应的激活区域,或估计大脑动力学。在这里,我们着重于提高血流动力学反应函数(HRF)群体水平推断的准确性。我们基于现有的联合检测-估计(JDE)框架,该框架旨在联合检测诱发活动和估计HRF形状。到目前为止,特定区域群体一级的心率变化是通过平均受试者体内心率变化概况来获得的。在这里,我们的方法通过提出一个分层贝叶斯建模,将JDE形式化扩展到多主题上下文中,该建模包含一个用于描述特定主题和组级hrf之间联系的附加层。这个扩展在人工和真实的多主题数据集上都优于原始方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-subject Bayesian Joint Detection and Estimation in fMRI
Modern cognitive experiments in functional Magnetic Resonance Imaging (fMRI) rely on a cohort of subjects sampled from a population of interest to study characteristics of the healthy brain or to identify biomarkers on a specific pathology (e.g., Alzheimer's disease) or disorder (e.g., ageing). Group-level studies usually proceed in two steps by making random-effect analysis on top of intra-subject analyses, to localize activated regions in response to stimulations or to estimate brain dynamics. Here, we focus on improving the accuracy of group-level inference of the hemodynamic response function (HRF). We rest on a existing Joint Detection-Estimation (JDE) framework which aims at detecting evoked activity and estimating HRF shapes jointly. So far, region-specific group-level HRFs have been captured by averaging intra-subject HRF profiles. Here, our approach extends the JDE formalism to the multi-subject context by proposing a hierarchical Bayesian modeling that includes an additional layer for describing the link between subject-specific and group-level HRFs. This extension outperforms the original approach both on artificial and real multi-subject datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Causal and anti-causal learning in pattern recognition for neuroimaging Gaussian mixture models improve fMRI-based image reconstruction Combining neuroanatomical and clinical data to improve individualized early diagnosis of schizophrenia in subjects at high familial risk Bayesian correlated component analysis for inference of joint EEG activation Permutation distributions of fMRI classification do not behave in accord with central limit theorem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1