关于机器学习系统中私有信息的保护:两种最新方法

Martín Abadi, Ú. Erlingsson, I. Goodfellow, H. B. McMahan, Ilya Mironov, Nicolas Papernot, Kunal Talwar, Li Zhang
{"title":"关于机器学习系统中私有信息的保护:两种最新方法","authors":"Martín Abadi, Ú. Erlingsson, I. Goodfellow, H. B. McMahan, Ilya Mironov, Nicolas Papernot, Kunal Talwar, Li Zhang","doi":"10.1109/CSF.2017.10","DOIUrl":null,"url":null,"abstract":"The recent, remarkable growth of machine learning has led to intense interest in the privacy of the data on which machine learning relies, and to new techniques for preserving privacy. However, older ideas about privacy may well remain valid and useful. This note reviews two recent works on privacy in the light of the wisdom of some of the early literature, in particular the principles distilled by Saltzer and Schroeder in the 1970s.","PeriodicalId":269696,"journal":{"name":"2017 IEEE 30th Computer Security Foundations Symposium (CSF)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"On the Protection of Private Information in Machine Learning Systems: Two Recent Approches\",\"authors\":\"Martín Abadi, Ú. Erlingsson, I. Goodfellow, H. B. McMahan, Ilya Mironov, Nicolas Papernot, Kunal Talwar, Li Zhang\",\"doi\":\"10.1109/CSF.2017.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent, remarkable growth of machine learning has led to intense interest in the privacy of the data on which machine learning relies, and to new techniques for preserving privacy. However, older ideas about privacy may well remain valid and useful. This note reviews two recent works on privacy in the light of the wisdom of some of the early literature, in particular the principles distilled by Saltzer and Schroeder in the 1970s.\",\"PeriodicalId\":269696,\"journal\":{\"name\":\"2017 IEEE 30th Computer Security Foundations Symposium (CSF)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 30th Computer Security Foundations Symposium (CSF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF.2017.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2017.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

最近,机器学习的显著增长引起了人们对机器学习所依赖的数据隐私的强烈兴趣,以及保护隐私的新技术。然而,关于隐私的旧观念可能仍然有效和有用。本文根据一些早期文献的智慧,特别是Saltzer和Schroeder在20世纪70年代提炼的原则,回顾了最近两部关于隐私的著作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Protection of Private Information in Machine Learning Systems: Two Recent Approches
The recent, remarkable growth of machine learning has led to intense interest in the privacy of the data on which machine learning relies, and to new techniques for preserving privacy. However, older ideas about privacy may well remain valid and useful. This note reviews two recent works on privacy in the light of the wisdom of some of the early literature, in particular the principles distilled by Saltzer and Schroeder in the 1970s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Composition of PKIs with Public Key Protocols Formal Verification of Protocols Based on Short Authenticated Strings Symbolic Verification of Privacy-Type Properties for Security Protocols with XOR Verified Translation Validation of Static Analyses Tight Bounds on Information Leakage from Repeated Independent Runs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1