利用本体提高基于实例的低资源语言机器翻译质量

Md. Anwarus Salam Khan, Setsuo Yamada, T. Nishino
{"title":"利用本体提高基于实例的低资源语言机器翻译质量","authors":"Md. Anwarus Salam Khan, Setsuo Yamada, T. Nishino","doi":"10.2991/ijndc.2017.5.3.6","DOIUrl":null,"url":null,"abstract":"In this research we propose to use ontology to improve the performance of an EBMT system for low-resource language pair. The EBMT architecture use (CSTs) and unknown word translation mechanism. CSTs consist of a chunk in source-language, a string in target-language, and word alignment information. For unknown word translation, we used WordNet hypernym tree and English-Bengali dictionary. CSTs improved the wide-coverage by 57 points and quality by 48.81 points in human evaluation. Currently 64.29% of the test-set translations by the system were acceptable. The combined solutions of CSTs and unknown words generated 67.85% acceptable translations from the test-set. Unknown words mechanism improved translation quality by 3.56 points in human evaluation.","PeriodicalId":318936,"journal":{"name":"Int. J. Networked Distributed Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improve Example-Based Machine Translation Quality for Low-Resource Language Using Ontology\",\"authors\":\"Md. Anwarus Salam Khan, Setsuo Yamada, T. Nishino\",\"doi\":\"10.2991/ijndc.2017.5.3.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research we propose to use ontology to improve the performance of an EBMT system for low-resource language pair. The EBMT architecture use (CSTs) and unknown word translation mechanism. CSTs consist of a chunk in source-language, a string in target-language, and word alignment information. For unknown word translation, we used WordNet hypernym tree and English-Bengali dictionary. CSTs improved the wide-coverage by 57 points and quality by 48.81 points in human evaluation. Currently 64.29% of the test-set translations by the system were acceptable. The combined solutions of CSTs and unknown words generated 67.85% acceptable translations from the test-set. Unknown words mechanism improved translation quality by 3.56 points in human evaluation.\",\"PeriodicalId\":318936,\"journal\":{\"name\":\"Int. J. Networked Distributed Comput.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Networked Distributed Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/ijndc.2017.5.3.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Networked Distributed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ijndc.2017.5.3.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本研究中,我们提出使用本体来提高低资源语言对的EBMT系统的性能。EBMT体系结构使用(cst)和未知词翻译机制。cst由源语言的块、目标语言的字符串和单词对齐信息组成。对于未知词的翻译,我们使用了WordNet超词树和英-孟加拉语词典。人工评价中,CSTs的覆盖面提高57分,质量提高48.81分。目前,64.29%的测试集翻译是可接受的。cst和未知词的组合解产生67.85%的可接受译文。未知词机制在人工评价中提高了3.56分的翻译质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improve Example-Based Machine Translation Quality for Low-Resource Language Using Ontology
In this research we propose to use ontology to improve the performance of an EBMT system for low-resource language pair. The EBMT architecture use (CSTs) and unknown word translation mechanism. CSTs consist of a chunk in source-language, a string in target-language, and word alignment information. For unknown word translation, we used WordNet hypernym tree and English-Bengali dictionary. CSTs improved the wide-coverage by 57 points and quality by 48.81 points in human evaluation. Currently 64.29% of the test-set translations by the system were acceptable. The combined solutions of CSTs and unknown words generated 67.85% acceptable translations from the test-set. Unknown words mechanism improved translation quality by 3.56 points in human evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Parameter Tuning for Constructing Storage Tiers in an Autonomous Distributed Storage System Application of 2‑gram and 3‑gram to Obtain Factor Scores of Statements Posted at Q&A Sites Bountychain: Toward Decentralizing a Bug Bounty Program with Blockchain and IPFS Secure Communications by Tit-for-Tat Strategy in Vehicular Networks Vehicle Platooning Systems: Review, Classification and Validation Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1