一种改进的随机梯度恒模波束形成算法

Yuguo Wang, Zhongjin Zhang, Lufei He, Qi Zhong, Huaqiong Li
{"title":"一种改进的随机梯度恒模波束形成算法","authors":"Yuguo Wang, Zhongjin Zhang, Lufei He, Qi Zhong, Huaqiong Li","doi":"10.1109/IMCEC.2016.7867173","DOIUrl":null,"url":null,"abstract":"This paper analyzes the existing recursion formulas of SG-CMA, presents an improved SG-CMA with better convergence and stronger beam-forming gain. Considering the disadvantages of existing error functions, the algorithm makes some changes. It takes the sum of the signal modulus of each element as the expected value, which overcomes the fluctuation of signal modulus, and increases the application range and anti-noise capability. The signal modulus of an arbitrary array is built, then the SG-CMA and the improved SG-CMA are compared by simulation based on uniform linear array. The simulation results verify the effectiveness of the improved SG-CMA as well as its improvement on convergence and beam-forming gain.","PeriodicalId":218222,"journal":{"name":"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An improved stochastic gradient constant modulus beam-forming algorithm\",\"authors\":\"Yuguo Wang, Zhongjin Zhang, Lufei He, Qi Zhong, Huaqiong Li\",\"doi\":\"10.1109/IMCEC.2016.7867173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the existing recursion formulas of SG-CMA, presents an improved SG-CMA with better convergence and stronger beam-forming gain. Considering the disadvantages of existing error functions, the algorithm makes some changes. It takes the sum of the signal modulus of each element as the expected value, which overcomes the fluctuation of signal modulus, and increases the application range and anti-noise capability. The signal modulus of an arbitrary array is built, then the SG-CMA and the improved SG-CMA are compared by simulation based on uniform linear array. The simulation results verify the effectiveness of the improved SG-CMA as well as its improvement on convergence and beam-forming gain.\",\"PeriodicalId\":218222,\"journal\":{\"name\":\"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCEC.2016.7867173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCEC.2016.7867173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分析了现有的SG-CMA递推公式,提出了一种收敛性更好、波束形成增益更强的改进SG-CMA。针对现有误差函数的缺点,对算法进行了改进。它以各单元的信号模量之和作为期望值,克服了信号模量的波动,增加了应用范围和抗噪能力。在建立任意阵列信号模量的基础上,对基于均匀线性阵列的SG-CMA和改进的SG-CMA进行了仿真比较。仿真结果验证了改进的SG-CMA的有效性,以及收敛性和波束形成增益的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved stochastic gradient constant modulus beam-forming algorithm
This paper analyzes the existing recursion formulas of SG-CMA, presents an improved SG-CMA with better convergence and stronger beam-forming gain. Considering the disadvantages of existing error functions, the algorithm makes some changes. It takes the sum of the signal modulus of each element as the expected value, which overcomes the fluctuation of signal modulus, and increases the application range and anti-noise capability. The signal modulus of an arbitrary array is built, then the SG-CMA and the improved SG-CMA are compared by simulation based on uniform linear array. The simulation results verify the effectiveness of the improved SG-CMA as well as its improvement on convergence and beam-forming gain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance path following for UAV based on advanced vector field guidance law Design of autonomous underwater vehicle positioning system Temperature field simulation of herringbone grooved bearing based on FLUENT software Docker based overlay network performance evaluation in large scale streaming system Multi-channel automatic calibration system of pressure sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1