基于顺序变分自编码器的判别性特征提取在说话人识别中的应用

Takenori Yoshimura, Natsumi Koike, Kei Hashimoto, Keiichiro Oura, Yoshihiko Nankaku, K. Tokuda
{"title":"基于顺序变分自编码器的判别性特征提取在说话人识别中的应用","authors":"Takenori Yoshimura, Natsumi Koike, Kei Hashimoto, Keiichiro Oura, Yoshihiko Nankaku, K. Tokuda","doi":"10.23919/APSIPA.2018.8659722","DOIUrl":null,"url":null,"abstract":"This paper presents an extended version of the variational autoencoder (VAE) for sequence modeling. In contrast to the original VAE, the proposed model can directly handle variable-length observation sequences. Furthermore, the discriminative model and the generative model are simultaneously learned in a unified framework. The network architecture of the proposed model is inspired by the i-vector/PLDA framework, whose effectiveness has been proven in sequence modeling tasks such as speaker recognition. Experimental results on the TIMIT database show that the proposed model outperforms the traditional i-vector/PLDA system.","PeriodicalId":287799,"journal":{"name":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discriminative Feature Extraction Based on Sequential Variational Autoencoder for Speaker Recognition\",\"authors\":\"Takenori Yoshimura, Natsumi Koike, Kei Hashimoto, Keiichiro Oura, Yoshihiko Nankaku, K. Tokuda\",\"doi\":\"10.23919/APSIPA.2018.8659722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an extended version of the variational autoencoder (VAE) for sequence modeling. In contrast to the original VAE, the proposed model can directly handle variable-length observation sequences. Furthermore, the discriminative model and the generative model are simultaneously learned in a unified framework. The network architecture of the proposed model is inspired by the i-vector/PLDA framework, whose effectiveness has been proven in sequence modeling tasks such as speaker recognition. Experimental results on the TIMIT database show that the proposed model outperforms the traditional i-vector/PLDA system.\",\"PeriodicalId\":287799,\"journal\":{\"name\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPA.2018.8659722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPA.2018.8659722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了用于序列建模的变分自编码器(VAE)的扩展版本。与原始VAE相比,该模型可以直接处理变长观测序列。此外,判别模型和生成模型在一个统一的框架中同时学习。该模型的网络架构受到i-vector/PLDA框架的启发,其有效性已在说话人识别等序列建模任务中得到证明。在TIMIT数据库上的实验结果表明,该模型优于传统的i-vector/PLDA系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discriminative Feature Extraction Based on Sequential Variational Autoencoder for Speaker Recognition
This paper presents an extended version of the variational autoencoder (VAE) for sequence modeling. In contrast to the original VAE, the proposed model can directly handle variable-length observation sequences. Furthermore, the discriminative model and the generative model are simultaneously learned in a unified framework. The network architecture of the proposed model is inspired by the i-vector/PLDA framework, whose effectiveness has been proven in sequence modeling tasks such as speaker recognition. Experimental results on the TIMIT database show that the proposed model outperforms the traditional i-vector/PLDA system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Epileptic Focus Localization Based on iEEG by Using Positive Unlabeled (PU) Learning Image Retrieval using CNN and Low-level Feature Fusion for Crime Scene Investigation Image Database Privacy-Preserving SVM Computing in the Encrypted Domain Graphical User Interface for Medical Deep Learning - Application to Magnetic Resonance Imaging Statistical-Mechanical Analysis of the Second-Order Adaptive Volterra Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1