近期音乐查询流的在线挖掘

Hua-Fu Li, Chin-Chuan Ho, M. Shan, Suh-Yin Lee
{"title":"近期音乐查询流的在线挖掘","authors":"Hua-Fu Li, Chin-Chuan Ho, M. Shan, Suh-Yin Lee","doi":"10.1109/ICME.2006.262948","DOIUrl":null,"url":null,"abstract":"Mining multimedia data is one of the most important issues in data mining. In this paper, we propose an online one-pass algorithm to mine the set of frequent temporal patterns in online music query streams with a sliding window. An effective bit-sequence representation is used to reduce the processing time and memory needed to slide the windows. Experiments show that the proposed algorithm only needs a half of memory requirement of original music query data, and just scans the data once","PeriodicalId":339258,"journal":{"name":"2006 IEEE International Conference on Multimedia and Expo","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Online Mining of Recent Music Query Streams\",\"authors\":\"Hua-Fu Li, Chin-Chuan Ho, M. Shan, Suh-Yin Lee\",\"doi\":\"10.1109/ICME.2006.262948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining multimedia data is one of the most important issues in data mining. In this paper, we propose an online one-pass algorithm to mine the set of frequent temporal patterns in online music query streams with a sliding window. An effective bit-sequence representation is used to reduce the processing time and memory needed to slide the windows. Experiments show that the proposed algorithm only needs a half of memory requirement of original music query data, and just scans the data once\",\"PeriodicalId\":339258,\"journal\":{\"name\":\"2006 IEEE International Conference on Multimedia and Expo\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2006.262948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2006.262948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

多媒体数据挖掘是数据挖掘中的一个重要问题。在本文中,我们提出了一种在线一次性算法来挖掘具有滑动窗口的在线音乐查询流中的频繁时间模式集。使用有效的位序列表示来减少窗口滑动所需的处理时间和内存。实验表明,该算法只需要原始音乐查询数据一半的内存需求,并且只需扫描一次数据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online Mining of Recent Music Query Streams
Mining multimedia data is one of the most important issues in data mining. In this paper, we propose an online one-pass algorithm to mine the set of frequent temporal patterns in online music query streams with a sliding window. An effective bit-sequence representation is used to reduce the processing time and memory needed to slide the windows. Experiments show that the proposed algorithm only needs a half of memory requirement of original music query data, and just scans the data once
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Echo Cancellation in a Channel with Rapidly Varying Gain A Two-Layer Graphical Model for Combined Video Shot and Scene Boundary Detection SCCS: A Scalable Clustered Camera System for Multiple Object Tracking Communicating Via Message Passing Interface Identification and Detection of the Same Scene Based on Flash Light Patterns Bandwidth Estimation in Wireless Lans for Multimedia Streaming Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1