地理分布式云数据中心选择的可用性和成本优化

Hasan Ziafat, S. M. Babamir
{"title":"地理分布式云数据中心选择的可用性和成本优化","authors":"Hasan Ziafat, S. M. Babamir","doi":"10.1109/ICAICT.2016.7991769","DOIUrl":null,"url":null,"abstract":"With increasing data clouds in different geographical areas, the availability of a datacenter and the cost of using the datacenter are two concerned factors of clouds users. The present research aims to present a method using K-means clustering and NSGA-II multi-objective algorithm to maximize availability and minimizes cost in selecting a datacenter. The proposed approach was applied to some real geographically distributed datacenters. Results showed that proposed approach outperforms greedy and random common algorithms.","PeriodicalId":446472,"journal":{"name":"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards optimization of availability and cost in selection of geo-distributed clouds datacenter\",\"authors\":\"Hasan Ziafat, S. M. Babamir\",\"doi\":\"10.1109/ICAICT.2016.7991769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With increasing data clouds in different geographical areas, the availability of a datacenter and the cost of using the datacenter are two concerned factors of clouds users. The present research aims to present a method using K-means clustering and NSGA-II multi-objective algorithm to maximize availability and minimizes cost in selecting a datacenter. The proposed approach was applied to some real geographically distributed datacenters. Results showed that proposed approach outperforms greedy and random common algorithms.\",\"PeriodicalId\":446472,\"journal\":{\"name\":\"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICT.2016.7991769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICT.2016.7991769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着不同地理区域的数据云的增加,数据中心的可用性和使用数据中心的成本是云用户关心的两个因素。本研究旨在提出一种利用k -均值聚类和NSGA-II多目标算法实现可用性最大化和成本最小化的数据中心选择方法。将该方法应用于实际的地理分布式数据中心。结果表明,该方法优于贪婪算法和随机算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards optimization of availability and cost in selection of geo-distributed clouds datacenter
With increasing data clouds in different geographical areas, the availability of a datacenter and the cost of using the datacenter are two concerned factors of clouds users. The present research aims to present a method using K-means clustering and NSGA-II multi-objective algorithm to maximize availability and minimizes cost in selecting a datacenter. The proposed approach was applied to some real geographically distributed datacenters. Results showed that proposed approach outperforms greedy and random common algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opinion mining and Sentiment Analysis for contextual online-advertisement Analysis of bioclimatic structure of animals' habitats on the base of the heat balance simulation The subject-oriented notation for end-user data modelling Semi-automatic annotation tool for sign languages VLSI elements placement based on simulation of bats behavior in nature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1