基于视觉的捕获刚度未知的生物细胞光学操纵

Xiang Li, C. Cheah, Sayyed Omar Kamal Al-Jufry
{"title":"基于视觉的捕获刚度未知的生物细胞光学操纵","authors":"Xiang Li, C. Cheah, Sayyed Omar Kamal Al-Jufry","doi":"10.1109/ROBIO.2014.7090379","DOIUrl":null,"url":null,"abstract":"Current robotic manipulation techniques for optical tweezers assume that the trapping stiffness of optical trap is constant and exactly known. In addition, the dynamic interaction between the cell and the manipulator of laser source is usually ignored in the analysis of the optical manipulation problem. In this paper, a control scheme is proposed for optical manipulation of biological cell with unknown trapping stiffness, which allows the laser beam to automatically trap and manipulate the cell to a desired position. The requirement on the model of the trapping stiffness is eliminated in the proposed formulation and thus system identification and calibration are not needed. The stability of the overall system is analyzed by using Lyapunov-like method, with consideration of the dynamics of both the cell and the manipulator of laser source. Experimental results are presented to illustrate the performance of the proposed cell manipulation method.","PeriodicalId":289829,"journal":{"name":"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vision based optical manipulation of biological cell with unknown trapping stiffness\",\"authors\":\"Xiang Li, C. Cheah, Sayyed Omar Kamal Al-Jufry\",\"doi\":\"10.1109/ROBIO.2014.7090379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current robotic manipulation techniques for optical tweezers assume that the trapping stiffness of optical trap is constant and exactly known. In addition, the dynamic interaction between the cell and the manipulator of laser source is usually ignored in the analysis of the optical manipulation problem. In this paper, a control scheme is proposed for optical manipulation of biological cell with unknown trapping stiffness, which allows the laser beam to automatically trap and manipulate the cell to a desired position. The requirement on the model of the trapping stiffness is eliminated in the proposed formulation and thus system identification and calibration are not needed. The stability of the overall system is analyzed by using Lyapunov-like method, with consideration of the dynamics of both the cell and the manipulator of laser source. Experimental results are presented to illustrate the performance of the proposed cell manipulation method.\",\"PeriodicalId\":289829,\"journal\":{\"name\":\"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2014.7090379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2014.7090379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前的光镊机器人操作技术假设光阱的捕获刚度是恒定的,并且是已知的。此外,在光学操纵问题的分析中,通常忽略了单元与激光光源操纵臂之间的动态相互作用。本文提出了一种用于捕获刚度未知的生物细胞的光学操纵的控制方案,该方案可以使激光束自动捕获并操纵细胞到期望的位置。该公式消除了对捕获刚度模型的要求,因此不需要系统识别和校准。采用类李雅普诺夫方法分析了整个系统的稳定性,同时考虑了激光源单元和操作臂的动力学特性。实验结果说明了所提出的细胞操作方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vision based optical manipulation of biological cell with unknown trapping stiffness
Current robotic manipulation techniques for optical tweezers assume that the trapping stiffness of optical trap is constant and exactly known. In addition, the dynamic interaction between the cell and the manipulator of laser source is usually ignored in the analysis of the optical manipulation problem. In this paper, a control scheme is proposed for optical manipulation of biological cell with unknown trapping stiffness, which allows the laser beam to automatically trap and manipulate the cell to a desired position. The requirement on the model of the trapping stiffness is eliminated in the proposed formulation and thus system identification and calibration are not needed. The stability of the overall system is analyzed by using Lyapunov-like method, with consideration of the dynamics of both the cell and the manipulator of laser source. Experimental results are presented to illustrate the performance of the proposed cell manipulation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Velocity field control with energy compensation toward therapeutic exercise A control-oriented model of underwater snake robots Quadrupedal locomotion based on a muscular activation pattern with stretch-reflex Novelty detection in user behavioural models within ambient assisted living applications: An experimental evaluation Simultaneous allocations of multiple tightly-coupled multi-robot tasks to coalitions of heterogeneous robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1