一个递归Renyi熵估计器

Deniz Erdoğmuş, J. Príncipe, Sung-Phil Kim, Justin C. Sanchez
{"title":"一个递归Renyi熵估计器","authors":"Deniz Erdoğmuş, J. Príncipe, Sung-Phil Kim, Justin C. Sanchez","doi":"10.1109/NNSP.2002.1030032","DOIUrl":null,"url":null,"abstract":"Estimating the entropy of a sample set is required, in solving numerous learning scenarios involving information theoretic optimization criteria. A number of entropy estimators are available in the literature; however, these require a batch of samples to operate on in order to yield an estimate. We derive a recursive formula to estimate Renyi's (1970) quadratic entropy on-line, using each new sample to update the entropy estimate to obtain more accurate results in stationary situations or to track the changing entropy of a signal in nonstationary situations.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"A recursive Renyi's entropy estimator\",\"authors\":\"Deniz Erdoğmuş, J. Príncipe, Sung-Phil Kim, Justin C. Sanchez\",\"doi\":\"10.1109/NNSP.2002.1030032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the entropy of a sample set is required, in solving numerous learning scenarios involving information theoretic optimization criteria. A number of entropy estimators are available in the literature; however, these require a batch of samples to operate on in order to yield an estimate. We derive a recursive formula to estimate Renyi's (1970) quadratic entropy on-line, using each new sample to update the entropy estimate to obtain more accurate results in stationary situations or to track the changing entropy of a signal in nonstationary situations.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

在解决许多涉及信息理论优化准则的学习场景时,需要估计样本集的熵。文献中有许多熵估计器;然而,这些需要一批样本来操作,以产生估计。我们推导了一个递归公式来在线估计Renyi(1970)的二次熵,使用每个新样本来更新熵估计,以在平稳情况下获得更准确的结果,或者在非平稳情况下跟踪信号的熵变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A recursive Renyi's entropy estimator
Estimating the entropy of a sample set is required, in solving numerous learning scenarios involving information theoretic optimization criteria. A number of entropy estimators are available in the literature; however, these require a batch of samples to operate on in order to yield an estimate. We derive a recursive formula to estimate Renyi's (1970) quadratic entropy on-line, using each new sample to update the entropy estimate to obtain more accurate results in stationary situations or to track the changing entropy of a signal in nonstationary situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of multiple experts in multimodal biometric personal identity verification systems A new SOLPN-based rate control algorithm for MPEG video coding Analog implementation for networks of integrate-and-fire neurons with adaptive local connectivity Removal of residual crosstalk components in blind source separation using LMS filters Functional connectivity modelling in fMRI based on causal networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1