基于生理信号的ASD儿童应激检测

Sevgi Nur Bilgin Aktas, Pinar Uluer, Buket Coşkun, Elif Toprak, D. Erol, H. Kose-Bagci, T. Zorcec, B. Robins, A. Landowska
{"title":"基于生理信号的ASD儿童应激检测","authors":"Sevgi Nur Bilgin Aktas, Pinar Uluer, Buket Coşkun, Elif Toprak, D. Erol, H. Kose-Bagci, T. Zorcec, B. Robins, A. Landowska","doi":"10.1109/SIU55565.2022.9864668","DOIUrl":null,"url":null,"abstract":"This paper proposes a physiological signal-based stress detection approach for children with autism spectrum disorder (ASD) to be used in social and assistive robot intervention. Electrodermal activity (EDA) and blood volume pulse (BVP) signals are collected with an E4 smart wristband from children with ASD in different countries. The peak count and signal amplitude features are derived from EDA signal and used in order to detect the stress of children based on the previously provided reference baselines. Furthermore, a comparison has been made with the stress values determined using low frequency (LF) and high frequency (HF) values extracted from BVP signal.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stress Detection of Children With ASD Using Physiological Signals\",\"authors\":\"Sevgi Nur Bilgin Aktas, Pinar Uluer, Buket Coşkun, Elif Toprak, D. Erol, H. Kose-Bagci, T. Zorcec, B. Robins, A. Landowska\",\"doi\":\"10.1109/SIU55565.2022.9864668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a physiological signal-based stress detection approach for children with autism spectrum disorder (ASD) to be used in social and assistive robot intervention. Electrodermal activity (EDA) and blood volume pulse (BVP) signals are collected with an E4 smart wristband from children with ASD in different countries. The peak count and signal amplitude features are derived from EDA signal and used in order to detect the stress of children based on the previously provided reference baselines. Furthermore, a comparison has been made with the stress values determined using low frequency (LF) and high frequency (HF) values extracted from BVP signal.\",\"PeriodicalId\":115446,\"journal\":{\"name\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU55565.2022.9864668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于生理信号的自闭症谱系障碍(ASD)儿童应激检测方法,用于社交和辅助机器人干预。用E4智能手环收集不同国家ASD儿童的皮肤电活动(EDA)和血容量脉冲(BVP)信号。峰值计数和信号幅度特征来源于EDA信号,并基于先前提供的参考基线用于检测儿童的压力。并与从BVP信号中提取的低频(LF)和高频(HF)值确定的应力值进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stress Detection of Children With ASD Using Physiological Signals
This paper proposes a physiological signal-based stress detection approach for children with autism spectrum disorder (ASD) to be used in social and assistive robot intervention. Electrodermal activity (EDA) and blood volume pulse (BVP) signals are collected with an E4 smart wristband from children with ASD in different countries. The peak count and signal amplitude features are derived from EDA signal and used in order to detect the stress of children based on the previously provided reference baselines. Furthermore, a comparison has been made with the stress values determined using low frequency (LF) and high frequency (HF) values extracted from BVP signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic Prediction with Peak-Aware Temporal Graph Convolutional Networks Artificial Neural Network Based Fault Diagnostic System for Wind Turbines Remaining Useful Life Prediction on C-MAPSS Dataset via Joint Autoencoder-Regression Architecture A New Fast Walsh Hadamard Transform Spread UW-Optical-OFDM Waveform Indoor Localization with Transfer Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1