{"title":"用于微波头诊断系统的便携式和可穿戴设备","authors":"Imran M. Saied, Syed Ali Akbar Hussainy","doi":"10.1109/HI-POCT45284.2019.8962890","DOIUrl":null,"url":null,"abstract":"In recent years, there have been considerable developments in smart wearable devices and unobtrusive monitoring systems that can be used in detecting and monitoring a patient’s health. However, these technological advances have not been implemented for head diagnostics, where the majority of hospitals still relying on MRI or CT scans which are bulky and expensive. In this paper, a wearable and portable device is presented that can be used for microwave head diagnostic systems. The device contains 8 RF sensors that are placed in the inner lining of a hat. The sensors are then connected to a miniaturized vector network analyzer (VNA) that generates and receives signals from the sensors. The signals from the VNA can be captured and processed in a laptop, or it can transfer the data via a Bluetooth module to a mobile device that can process the data in an app. Experiments were performed on a brain phantom to verify the performance of the device. Objects of different sizes were placed in the phantom and measured to represent diseases such as stroke and tumour. Results from the experiments showed that the deice was capable of detecting different levels of diseases in the brain. As a result, the proposed device provides a promising technique for non-invasive head diagnostics that is wearable, portable, and inexpensive.","PeriodicalId":269346,"journal":{"name":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Portable and Wearable Device for Microwave Head Diagnostic Systems\",\"authors\":\"Imran M. Saied, Syed Ali Akbar Hussainy\",\"doi\":\"10.1109/HI-POCT45284.2019.8962890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, there have been considerable developments in smart wearable devices and unobtrusive monitoring systems that can be used in detecting and monitoring a patient’s health. However, these technological advances have not been implemented for head diagnostics, where the majority of hospitals still relying on MRI or CT scans which are bulky and expensive. In this paper, a wearable and portable device is presented that can be used for microwave head diagnostic systems. The device contains 8 RF sensors that are placed in the inner lining of a hat. The sensors are then connected to a miniaturized vector network analyzer (VNA) that generates and receives signals from the sensors. The signals from the VNA can be captured and processed in a laptop, or it can transfer the data via a Bluetooth module to a mobile device that can process the data in an app. Experiments were performed on a brain phantom to verify the performance of the device. Objects of different sizes were placed in the phantom and measured to represent diseases such as stroke and tumour. Results from the experiments showed that the deice was capable of detecting different levels of diseases in the brain. As a result, the proposed device provides a promising technique for non-invasive head diagnostics that is wearable, portable, and inexpensive.\",\"PeriodicalId\":269346,\"journal\":{\"name\":\"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HI-POCT45284.2019.8962890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HI-POCT45284.2019.8962890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Portable and Wearable Device for Microwave Head Diagnostic Systems
In recent years, there have been considerable developments in smart wearable devices and unobtrusive monitoring systems that can be used in detecting and monitoring a patient’s health. However, these technological advances have not been implemented for head diagnostics, where the majority of hospitals still relying on MRI or CT scans which are bulky and expensive. In this paper, a wearable and portable device is presented that can be used for microwave head diagnostic systems. The device contains 8 RF sensors that are placed in the inner lining of a hat. The sensors are then connected to a miniaturized vector network analyzer (VNA) that generates and receives signals from the sensors. The signals from the VNA can be captured and processed in a laptop, or it can transfer the data via a Bluetooth module to a mobile device that can process the data in an app. Experiments were performed on a brain phantom to verify the performance of the device. Objects of different sizes were placed in the phantom and measured to represent diseases such as stroke and tumour. Results from the experiments showed that the deice was capable of detecting different levels of diseases in the brain. As a result, the proposed device provides a promising technique for non-invasive head diagnostics that is wearable, portable, and inexpensive.