{"title":"基于硬件性能指标的多层网站容量在线测量","authors":"J. Rao, Chengzhong Xu","doi":"10.1109/ICDCS.2008.97","DOIUrl":null,"url":null,"abstract":"Understanding server capacity is crucial for system capacity planning, configuration, and QoS-aware resource management. Conventional stress testing approaches measure the server capacity in terms of application-level performance metrics like response time and throughput. They are limited in measurement accuracy and timeliness. In a multitier website, resource bottleneck often shifts between tiers as client access pattern changes. This makes the capacity measurement even more challenging. This paper presents a measurement approach based on hardware performance counter metrics. The approach uses machine learning techniques to infer application-level performance at each tier. A coordinated predictor is induced over individual tier models to estimate system-wide performance and identify the bottleneck when the system becomes overloaded. Experimental results demonstrate that this approach is able to achieve an overload prediction accuracy of higher than 90% for a priori known input traffic patterns and over 85% accuracy even for traffic causing frequent bottleneck shifting. It costs less than 0.5% runtime overhead for data collection and no more than 50 ms for each on-line decision.","PeriodicalId":240205,"journal":{"name":"2008 The 28th International Conference on Distributed Computing Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Online Measurement of the Capacity of Multi-Tier Websites Using Hardware Performance Counters\",\"authors\":\"J. Rao, Chengzhong Xu\",\"doi\":\"10.1109/ICDCS.2008.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding server capacity is crucial for system capacity planning, configuration, and QoS-aware resource management. Conventional stress testing approaches measure the server capacity in terms of application-level performance metrics like response time and throughput. They are limited in measurement accuracy and timeliness. In a multitier website, resource bottleneck often shifts between tiers as client access pattern changes. This makes the capacity measurement even more challenging. This paper presents a measurement approach based on hardware performance counter metrics. The approach uses machine learning techniques to infer application-level performance at each tier. A coordinated predictor is induced over individual tier models to estimate system-wide performance and identify the bottleneck when the system becomes overloaded. Experimental results demonstrate that this approach is able to achieve an overload prediction accuracy of higher than 90% for a priori known input traffic patterns and over 85% accuracy even for traffic causing frequent bottleneck shifting. It costs less than 0.5% runtime overhead for data collection and no more than 50 ms for each on-line decision.\",\"PeriodicalId\":240205,\"journal\":{\"name\":\"2008 The 28th International Conference on Distributed Computing Systems\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 The 28th International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2008.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The 28th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2008.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online Measurement of the Capacity of Multi-Tier Websites Using Hardware Performance Counters
Understanding server capacity is crucial for system capacity planning, configuration, and QoS-aware resource management. Conventional stress testing approaches measure the server capacity in terms of application-level performance metrics like response time and throughput. They are limited in measurement accuracy and timeliness. In a multitier website, resource bottleneck often shifts between tiers as client access pattern changes. This makes the capacity measurement even more challenging. This paper presents a measurement approach based on hardware performance counter metrics. The approach uses machine learning techniques to infer application-level performance at each tier. A coordinated predictor is induced over individual tier models to estimate system-wide performance and identify the bottleneck when the system becomes overloaded. Experimental results demonstrate that this approach is able to achieve an overload prediction accuracy of higher than 90% for a priori known input traffic patterns and over 85% accuracy even for traffic causing frequent bottleneck shifting. It costs less than 0.5% runtime overhead for data collection and no more than 50 ms for each on-line decision.