实验证明了随机抽样在实际并行算法中的作用

M. R. Ghouse, M. Goodrich
{"title":"实验证明了随机抽样在实际并行算法中的作用","authors":"M. R. Ghouse, M. Goodrich","doi":"10.1109/IPPS.1993.262819","DOIUrl":null,"url":null,"abstract":"Recent results in parallel algorithm theory have shown random sampling to be a powerful technique for achieving efficient bounds on the expected asymptotic running time of parallel algorithms for a number of important problems. The authors show experimentally that randomization is also a powerful practical technique in the design and implementation of parallel algorithms. Random sampling can be used to design parallel algorithms with fast expected run times, which meet or beat the run times of methods based on more conventional methods for a variety of benchmark tests. The constant factors of proportionality in the run times are small, and, most importantly, the expected work (and hence running time) avoids worst cases due to input distribution. They justify the approach through experimental results obtained on a Connection Machine CM-2 for a specific problem, namely, segment intersection reporting, and explore the effect of varying the parameters of the method.<<ETX>>","PeriodicalId":248927,"journal":{"name":"[1993] Proceedings Seventh International Parallel Processing Symposium","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental evidence for the power of random sampling in practical parallel algorithms\",\"authors\":\"M. R. Ghouse, M. Goodrich\",\"doi\":\"10.1109/IPPS.1993.262819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent results in parallel algorithm theory have shown random sampling to be a powerful technique for achieving efficient bounds on the expected asymptotic running time of parallel algorithms for a number of important problems. The authors show experimentally that randomization is also a powerful practical technique in the design and implementation of parallel algorithms. Random sampling can be used to design parallel algorithms with fast expected run times, which meet or beat the run times of methods based on more conventional methods for a variety of benchmark tests. The constant factors of proportionality in the run times are small, and, most importantly, the expected work (and hence running time) avoids worst cases due to input distribution. They justify the approach through experimental results obtained on a Connection Machine CM-2 for a specific problem, namely, segment intersection reporting, and explore the effect of varying the parameters of the method.<<ETX>>\",\"PeriodicalId\":248927,\"journal\":{\"name\":\"[1993] Proceedings Seventh International Parallel Processing Symposium\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings Seventh International Parallel Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPPS.1993.262819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Seventh International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1993.262819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

并行算法理论的最新研究结果表明,随机抽样是一种强大的技术,可以在许多重要问题上实现并行算法的期望渐近运行时间的有效边界。实验表明,随机化在并行算法的设计和实现中也是一种强大的实用技术。随机抽样可用于设计具有快速预期运行时间的并行算法,这些算法在各种基准测试中满足或超过基于更传统方法的方法的运行时间。运行时间中的比例系数很小,而且最重要的是,预期的工作(以及因此产生的运行时间)避免了由于输入分布而导致的最坏情况。他们通过在连接机CM-2上获得的针对特定问题的实验结果来证明该方法的合理性,即分段交叉报告,并探索了改变该方法参数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental evidence for the power of random sampling in practical parallel algorithms
Recent results in parallel algorithm theory have shown random sampling to be a powerful technique for achieving efficient bounds on the expected asymptotic running time of parallel algorithms for a number of important problems. The authors show experimentally that randomization is also a powerful practical technique in the design and implementation of parallel algorithms. Random sampling can be used to design parallel algorithms with fast expected run times, which meet or beat the run times of methods based on more conventional methods for a variety of benchmark tests. The constant factors of proportionality in the run times are small, and, most importantly, the expected work (and hence running time) avoids worst cases due to input distribution. They justify the approach through experimental results obtained on a Connection Machine CM-2 for a specific problem, namely, segment intersection reporting, and explore the effect of varying the parameters of the method.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mapping realistic data sets on parallel computers A cluster-M based mapping methodology Supporting insertions and deletions in striped parallel filesystems An efficient atomic multicast protocol for client-server models Implementation of distributed asynchronous algorithms with stochastic delays for solving time drifting optimization problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1