ASCOS:一种非对称网络结构上下文相似性度量

Hung-Hsuan Chen, C. Lee Giles
{"title":"ASCOS:一种非对称网络结构上下文相似性度量","authors":"Hung-Hsuan Chen, C. Lee Giles","doi":"10.1145/2492517.2492539","DOIUrl":null,"url":null,"abstract":"Discovering similar objects in a social network has many interesting issues. Here, we present ASCOS, an Asymmetric Structure COntext Similarity measure that captures the similarity scores among any pairs of nodes in a network. The definition of ASCOS is similar to that of the well-known SimRank since both define score values recursively. However, we show that ASCOS outputs a more complete similarity score than SimRank because SimRank (and several of its variations, such as P-Rank and SimFusion) on average ignores half paths between nodes during calculation. To make ASCOS tractable in both computation time and memory usage, we propose two variations of ASCOS: a low rank approximation based approach and an iterative solver Gauss-Seidel for linear equations.When the target network is sparse, the run time and the required computing space of these variations are smaller than computing SimRank and ASCOS directly. In addition, the iterative solver divides the original network into several independent sub-systems so that a multi-core server or a distributed computing environment, such as MapReduce, can efficiently solve the problem. We compare the performance of ASCOS with other global structure based similarity measures, including SimRank, Katz, and LHN. The experimental results based on user evaluation suggest that ASCOS gives better results than other measures. In addition, the asymmetric property has the potential to identify the hierarchical structure of a network. Finally, variations of ASCOS (including one distributed variation) can also reduce computation both in space and time.","PeriodicalId":442230,"journal":{"name":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"ASCOS: An Asymmetric network Structure COntext Similarity measure\",\"authors\":\"Hung-Hsuan Chen, C. Lee Giles\",\"doi\":\"10.1145/2492517.2492539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering similar objects in a social network has many interesting issues. Here, we present ASCOS, an Asymmetric Structure COntext Similarity measure that captures the similarity scores among any pairs of nodes in a network. The definition of ASCOS is similar to that of the well-known SimRank since both define score values recursively. However, we show that ASCOS outputs a more complete similarity score than SimRank because SimRank (and several of its variations, such as P-Rank and SimFusion) on average ignores half paths between nodes during calculation. To make ASCOS tractable in both computation time and memory usage, we propose two variations of ASCOS: a low rank approximation based approach and an iterative solver Gauss-Seidel for linear equations.When the target network is sparse, the run time and the required computing space of these variations are smaller than computing SimRank and ASCOS directly. In addition, the iterative solver divides the original network into several independent sub-systems so that a multi-core server or a distributed computing environment, such as MapReduce, can efficiently solve the problem. We compare the performance of ASCOS with other global structure based similarity measures, including SimRank, Katz, and LHN. The experimental results based on user evaluation suggest that ASCOS gives better results than other measures. In addition, the asymmetric property has the potential to identify the hierarchical structure of a network. Finally, variations of ASCOS (including one distributed variation) can also reduce computation both in space and time.\",\"PeriodicalId\":442230,\"journal\":{\"name\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2492517.2492539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492517.2492539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

在社交网络中发现相似的对象有许多有趣的问题。在这里,我们提出了ASCOS,一种非对称结构上下文相似性度量,它捕获网络中任何对节点之间的相似性分数。ASCOS的定义类似于众所周知的simmrank,因为它们都递归地定义分数值。然而,我们表明ASCOS输出的相似性分数比simmrank更完整,因为simmrank(以及它的几个变体,如P-Rank和SimFusion)在计算过程中平均忽略了节点之间的半路径。为了使ASCOS在计算时间和内存使用上都易于处理,我们提出了ASCOS的两种变体:基于低秩近似的方法和线性方程的迭代求解器高斯-塞德尔。当目标网络稀疏时,这些变化的运行时间和所需的计算空间比直接计算simmrank和ASCOS要小。此外,迭代求解器将原始网络划分为几个独立的子系统,以便多核服务器或分布式计算环境(如MapReduce)可以高效地解决问题。我们将ASCOS的性能与其他基于全局结构的相似性度量进行了比较,包括simmrank、Katz和LHN。基于用户评价的实验结果表明,ASCOS比其他方法具有更好的效果。此外,不对称特性有可能识别网络的层次结构。最后,ASCOS的变化(包括一个分布式变化)也可以在空间和时间上减少计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ASCOS: An Asymmetric network Structure COntext Similarity measure
Discovering similar objects in a social network has many interesting issues. Here, we present ASCOS, an Asymmetric Structure COntext Similarity measure that captures the similarity scores among any pairs of nodes in a network. The definition of ASCOS is similar to that of the well-known SimRank since both define score values recursively. However, we show that ASCOS outputs a more complete similarity score than SimRank because SimRank (and several of its variations, such as P-Rank and SimFusion) on average ignores half paths between nodes during calculation. To make ASCOS tractable in both computation time and memory usage, we propose two variations of ASCOS: a low rank approximation based approach and an iterative solver Gauss-Seidel for linear equations.When the target network is sparse, the run time and the required computing space of these variations are smaller than computing SimRank and ASCOS directly. In addition, the iterative solver divides the original network into several independent sub-systems so that a multi-core server or a distributed computing environment, such as MapReduce, can efficiently solve the problem. We compare the performance of ASCOS with other global structure based similarity measures, including SimRank, Katz, and LHN. The experimental results based on user evaluation suggest that ASCOS gives better results than other measures. In addition, the asymmetric property has the potential to identify the hierarchical structure of a network. Finally, variations of ASCOS (including one distributed variation) can also reduce computation both in space and time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical analysis and implications of SNS search in under-developed countries Identifying unreliable sources of skill and competency information Assessing group cohesion in homophily networks Exploiting online social data in ontology learning for event tracking and emergency response Event identification for social streams using keyword-based evolving graph sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1