量子场论

F. Wilczek
{"title":"量子场论","authors":"F. Wilczek","doi":"10.1103/RevModPhys.71.S85","DOIUrl":null,"url":null,"abstract":"Quantum field theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the standard model, are formulated. Quantum electrodynamics (QED), besides providing a complete foundation for atomic physics and chemistry, has supported calculations of physical quantities with unparalleled precision. The experimentally measured value of the magnetic dipole moment of the muon, \n \n$${\\left({{g_\\mu } - 2} \\right)_{\\exp }} = 233\\,184\\,600\\,\\left({1680} \\right) \\times {10^{ - 11}},$$ \n \nfor example, should be compared with the theoretical prediction \n \n$${\\left({{g_\\mu } - 2} \\right)_{{\\rm{theor}}}} = 233\\,183\\,478\\,\\left( {308} \\right) \\times {10^{ - 11}}$$ \n \n(see the chapter by Hughes and Kinoshita on pp. 223-233 in this book).","PeriodicalId":437728,"journal":{"name":"Compendium of Quantum Physics","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3840","resultStr":"{\"title\":\"Quantum Field Theory\",\"authors\":\"F. Wilczek\",\"doi\":\"10.1103/RevModPhys.71.S85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum field theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the standard model, are formulated. Quantum electrodynamics (QED), besides providing a complete foundation for atomic physics and chemistry, has supported calculations of physical quantities with unparalleled precision. The experimentally measured value of the magnetic dipole moment of the muon, \\n \\n$${\\\\left({{g_\\\\mu } - 2} \\\\right)_{\\\\exp }} = 233\\\\,184\\\\,600\\\\,\\\\left({1680} \\\\right) \\\\times {10^{ - 11}},$$ \\n \\nfor example, should be compared with the theoretical prediction \\n \\n$${\\\\left({{g_\\\\mu } - 2} \\\\right)_{{\\\\rm{theor}}}} = 233\\\\,183\\\\,478\\\\,\\\\left( {308} \\\\right) \\\\times {10^{ - 11}}$$ \\n \\n(see the chapter by Hughes and Kinoshita on pp. 223-233 in this book).\",\"PeriodicalId\":437728,\"journal\":{\"name\":\"Compendium of Quantum Physics\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3840\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compendium of Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/RevModPhys.71.S85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compendium of Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/RevModPhys.71.S85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3840

摘要

量子场论是电弱和强相互作用的主要理论的框架,它们共同构成了标准模型。量子电动力学(QED)除了为原子物理和化学提供了完整的基础之外,还以无与伦比的精度支持了物理量的计算。例如,μ子的磁偶极矩的实验测量值$${\left({{g_\mu } - 2} \right)_{\exp }} = 233\,184\,600\,\left({1680} \right) \times {10^{ - 11}},$$应该与理论预测$${\left({{g_\mu } - 2} \right)_{{\rm{theor}}}} = 233\,183\,478\,\left( {308} \right) \times {10^{ - 11}}$$进行比较(见本书第223-233页Hughes和木下的章节)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Field Theory
Quantum field theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the standard model, are formulated. Quantum electrodynamics (QED), besides providing a complete foundation for atomic physics and chemistry, has supported calculations of physical quantities with unparalleled precision. The experimentally measured value of the magnetic dipole moment of the muon, $${\left({{g_\mu } - 2} \right)_{\exp }} = 233\,184\,600\,\left({1680} \right) \times {10^{ - 11}},$$ for example, should be compared with the theoretical prediction $${\left({{g_\mu } - 2} \right)_{{\rm{theor}}}} = 233\,183\,478\,\left( {308} \right) \times {10^{ - 11}}$$ (see the chapter by Hughes and Kinoshita on pp. 223-233 in this book).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hidden Variables Black Body Trace Zero-Point Energy Matter Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1