移动:应用延展性覆盖层的设计

Sébastien Monnet, Ramsés Morales, Gabriel Antoniu, Indranil Gupta
{"title":"移动:应用延展性覆盖层的设计","authors":"Sébastien Monnet, Ramsés Morales, Gabriel Antoniu, Indranil Gupta","doi":"10.1109/SRDS.2006.33","DOIUrl":null,"url":null,"abstract":"Peer-to-peer overlays allow distributed applications to work in a wide-area, scalable, and fault-tolerant manner. However, most structured and unstructured overlays present in literature today are inflexible from the application viewpoint. In other words, the application has no control over the structure of the overlay itself. This paper proposes the concept of an application-malleable overlay, and the design of the first malleable overlay which we call MOve. In MOve, the communication characteristics of the distributed application using the overlay can influence the overlay's structure itself, with the twin goals of (1) optimizing the application performance by adapting the overlay, while also (2) retaining the large scale and fault tolerance of the overlay approach. The influence could either be explicitly specified by the application or implicitly gleaned by our algorithms. Besides neighbor list membership management, MOve also contains algorithms for resource discovery, update propagation, and churn-resistance. The emergent behavior of the implicit mechanisms used in MOve manifests in the following way: when application communication is low, most overlay links keep their default configuration; however, as application communication characteristics become more evident, the overlay gracefully adapts itself to the application","PeriodicalId":164765,"journal":{"name":"2006 25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MOve: Design of An Application-Malleable Overlay\",\"authors\":\"Sébastien Monnet, Ramsés Morales, Gabriel Antoniu, Indranil Gupta\",\"doi\":\"10.1109/SRDS.2006.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Peer-to-peer overlays allow distributed applications to work in a wide-area, scalable, and fault-tolerant manner. However, most structured and unstructured overlays present in literature today are inflexible from the application viewpoint. In other words, the application has no control over the structure of the overlay itself. This paper proposes the concept of an application-malleable overlay, and the design of the first malleable overlay which we call MOve. In MOve, the communication characteristics of the distributed application using the overlay can influence the overlay's structure itself, with the twin goals of (1) optimizing the application performance by adapting the overlay, while also (2) retaining the large scale and fault tolerance of the overlay approach. The influence could either be explicitly specified by the application or implicitly gleaned by our algorithms. Besides neighbor list membership management, MOve also contains algorithms for resource discovery, update propagation, and churn-resistance. The emergent behavior of the implicit mechanisms used in MOve manifests in the following way: when application communication is low, most overlay links keep their default configuration; however, as application communication characteristics become more evident, the overlay gracefully adapts itself to the application\",\"PeriodicalId\":164765,\"journal\":{\"name\":\"2006 25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS.2006.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2006.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

点对点覆盖允许分布式应用程序以广域、可扩展和容错的方式工作。然而,从应用程序的角度来看,目前文献中的大多数结构化和非结构化覆盖都是不灵活的。换句话说,应用程序无法控制覆盖层本身的结构。本文提出了应用可延展覆盖层的概念,并设计了第一个可延展覆盖层,我们称之为MOve。在MOve中,使用覆盖层的分布式应用程序的通信特性会影响覆盖层本身的结构,其双重目标是:(1)通过调整覆盖层来优化应用程序性能,同时(2)保留覆盖方法的大规模和容错性。影响可以由应用程序显式指定,也可以由我们的算法隐式收集。除了邻居列表成员管理之外,MOve还包含用于资源发现、更新传播和防止流失的算法。MOve中使用的隐式机制的紧急行为表现在以下方面:当应用程序通信较低时,大多数覆盖链接保持其默认配置;然而,随着应用程序通信特征变得更加明显,覆盖层会很好地适应应用程序
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MOve: Design of An Application-Malleable Overlay
Peer-to-peer overlays allow distributed applications to work in a wide-area, scalable, and fault-tolerant manner. However, most structured and unstructured overlays present in literature today are inflexible from the application viewpoint. In other words, the application has no control over the structure of the overlay itself. This paper proposes the concept of an application-malleable overlay, and the design of the first malleable overlay which we call MOve. In MOve, the communication characteristics of the distributed application using the overlay can influence the overlay's structure itself, with the twin goals of (1) optimizing the application performance by adapting the overlay, while also (2) retaining the large scale and fault tolerance of the overlay approach. The influence could either be explicitly specified by the application or implicitly gleaned by our algorithms. Besides neighbor list membership management, MOve also contains algorithms for resource discovery, update propagation, and churn-resistance. The emergent behavior of the implicit mechanisms used in MOve manifests in the following way: when application communication is low, most overlay links keep their default configuration; however, as application communication characteristics become more evident, the overlay gracefully adapts itself to the application
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance evaluation of a fair fault-tolerant mutual exclusion algorithm Fault-tolerant and scalable TCP splice and web server architecture Improvements and Reconsideration of Distributed Snapshot Protocols Improving DBMS Performance through Diverse Redundancy AVCast : New Approaches For Implementing Availability-Dependent Reliability for Multicast Receivers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1